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Abstract

We present the case of automatic identification
of “implant terms”. Implant terms are special-
ized terms that are important for domain ex-
perts (e.g. radiologists), but they are difficult
to retrieve automatically because their pres-
ence is sparse. The need of an automatic iden-
tification of implant terms spurs from safety
reasons because patients who have an implant
may be at risk if they undergo Magnetic Res-
onance Imaging (MRI). At present, the work-
flow to verify whether a patient could be at
risk of MRI side-effects is manual and labori-
ous. We claim that this workflow can be sped
up, streamlined and become safer by automati-
cally sieving through patients’ medical records
to ascertain if they have or have had an implant.
To this aim we use BERT, a state-of-the-art
deep learning algorithm based on pre-trained
word embeddings and we create a model that
outputs term clusters. We then assess the lin-
guistic quality or term relatedness of individ-
ual term clusters using a simple intra-cluster
metric that we call cleanliness. Results are
promising.

1 Introduction

Domain-specific terminology extraction is an im-
portant task in a number of areas, such as knowl-
edge base construction (Lustberg et al., 2018), on-
tology induction (Sazonau et al., 2015) or taxon-
omy creation (Šmite et al., 2014).

We present experiments on an underexplored
type of terminology extraction that we call “fo-
cused terminology extraction”. With this expres-
sion we refer to terms or to a nomenclature that
represent a specialized semantic field. The auto-
matic identification and extraction of this kind of
nomenclature are a common need in many domains,

e.g. medicine, dentistry, chemistry, aeronautics, en-
gineering and the like.

In these experiments, we explore focused ter-
minology related to the semantic field of terms
that indicate or suggest the presence of “implants”
in electronic medical records (EMRs) written in
Swedish. More specifically, the aim of our exper-
iments is to investigate whether it is possible to
discover implant terms or implant-related words
unsupervisely, i.e. learning from unlabelled data.
This task is currently part of an ongoing project
carried out together with LIU University Hospital.
We present here the results and the lessons learned
from Phase 1 of the project.

Implant terms are domain-specific words indicat-
ing artificial artefacts that replace or complement
parts of the human body. Common implants are
devices such as ‘pacemaker’, ‘shunt’, ‘codman’,
‘prosthesis’ or ‘stent’.

The need of an automatic identification of im-
plant terms spurs from safety reasons because pa-
tients who have an implant may or may be not
submitted to Magnetic Resonance Imaging (MRI).
MRI scans are very safe and most people are able
to benefit from it. However, in some cases an MRI
scan may not be recommended. Before undergo-
ing an MRI scan, the following conditions must
be verified: (a) the presence of metal in the body
and (b) being pregnant or breastfeeding. Implants
are often metallic objects, therefore it is important
to know if a patient has an implant, because MRI-
scanning is incompatible with some implants (e.g.
the ‘pulmonary artery catheter’) or maybe partially
compatible with some of them (e.g. the ‘mitraclip’).
An example of a recommendation on implants is
shown in Figure 1. The translated (narrative) ver-
sion of the recommendation reads: “If a pacemaker



electrode is present in the patient’s body, then the
patient cannot be exposed to MRI scanning”.

Figure 1: According to this recommendation, a patient
having a pacemaker electrode in the body cannot un-
dergo MRI scanning.

Unsafe implants must be considered before MRI-
scanning, as they may be contraindicative, while
conditional implants can be left in the patient’s
body, if conditions are appropriately accounted for.
One of the safety measures in MRI-clinics is to ask
patients whether they have or have had an implant.
This routine is not completely reliable, because a
patient (especially if elderly) might have forgotten
about the presence of implants in the body. When
a patient has or is suspected to have an implant, the
procedure of recognition and acknowledgement is
manual, laborious and involves quite many human
experts with specialized knowledge. The workflow
of the current procedure is shown in Figure 2 and
described in (Kihlberg and Lundberg, 2019).

Even if implants have been removed, metallic or
electronic parts (like small electrodes or metallic
clips) may have been overlooked and left in situ,
without causing harm to patient’s health before the
MRI. Normally, referring physicians may be aware
of the limitation of specific implants, and prior to
an MRI examination, they should go through the
patient’s medical history by reading EMRs.

EMRs are digital documents, but the information
they contain is not structured or organized in a way
that makes it trivial to find implant terms quickly
and efficiently. This downside can be addressed
by automatically trying to identify the terms from
the EMR based on their contextual usage, e.g. us-
ing word embeddings. In our experiments, we
use BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019), which is
the state-of-the art in computational linguistics and
deep learning for several downstream tasks, e.g.
text classification, question-answering or natural
language understanding. Our downstream task is to
find as many validated instances of implant-related
words as possible in free-text EMRs. Here we

present the lessons we have learned from Phase 1
of the project.

2 Related Work

“Focused” terminology extraction refers to men-
tions of a relatively small number of technical
terms. From a semantic perspective, focused termi-
nology extraction is challenging because the task
implies an unsupervised discovery of a handful of
specialized terms scattered in millions of words
across unstructured textual documents, such as
EMRs. This characterization has some similar-
ities with the “relevant but sparse” definition in
Ittoo and Bouma (2013). EMRs are written by
physicians who typically use a wide range of medi-
cal sublanguages that are not only based on regu-
lar medical jargon, but also include unpredictable
word-shortening and abbreviations, spelling vari-
ants of the same word (including typos), numbers,
and the like. What is more, these sublanguages
vary across hospitals and clinics.

Focused terminology extraction is still underex-
plored. Little work exists on this task, although its
usefulness in real-world applications is extensive.

Recent studies exist however on general medical
synonym discovery. For instance, Schumacher and
Dredze (2019) compare eight neural models on the
task of finding disorder synonyms in English clin-
ical free text. In their evaluation, ELMO models
performs moderately better than the other models.
Before the neural revolution and the word embed-
dings paradigm, models for synonym extraction
have been proposed for many languages and also
specifically for the Swedish language. The models
for Swedish presented in Henriksson et al. (2012)
are based on (by now) traditional word space mod-
els, namely Random Indexing and Random Permu-
tation. The models were designed to identify both
synonyms and abbreviations. These models were
built on the Stockholm EPR Corpus (Dalianis et al.,
2009) and synonym extraction was evaluated on
the Swedish version of MeSH and its extension1.
Results were encouraging, but limited to terms in-
cluded in Swedish MeSH, which does not cover the
whole medical terminology and, what is more, does
not include graphical variations that are present in
the informal medical sublanguage often used in
medical records.
Focussed terminology extraction could be inter-
preted as a special case of Named Entity Recog-

1https://mesh.kib.ki.se/



Figure 2: Current workflow (Kihlberg and Lundberg, 2019)

nition (NER), where the entities to be identified
are words indicative of implants. We considered
the possibility of fine-tuning a BERT pre-trained
model on a labelled corpus of implant terms using
custom labels. However, at present, this annotation
endevour cannot be undertaken because it requires
financial resources and a time span that are not
available at the time of this publication.

We then explored the unsupervised NER so-
lution based on BERT proposed in an article by
Ajit Rajasekharan2. This article describes a fully-
unsupervised approach to NER based on the pre-
trained bert-large-cased (English). The approach
relies on signatures indicating entities, on a mor-
phological tagger and on BERT’s Masked Lan-
guage Model (MLM) head to predict candidate
words for the masked positions. To put it simply,
the approach combines NER and MLM using the
head of the MLM to extract entities. Results seem
to be promising for the NER task. However, the
adaptation of this approach to the recognition of
implant terms and to our domain-specific data re-
sulted overly complex. One main hinder to this
adaptation is the use of a morphological tagger.
Our data is noisy and specialized and the result of a
tagger on this data is certainly unreliable without a
proper retraining of the tagger itself for domain and
genre. Another difficult step to adapt to our task
is the creation of signatures that are then handled
at raw word embedding level. As the author puts
it, the unsupervised NER approach works because:
“BERT’s raw word embeddings capture useful and

2https://towardsdatascience.com/unsupervised-ner-using-
bert-2d7af5f90b8a (published 2020, updated 2021, retrieved
2021.)

separable information (distinct histogram tails with
less than 0.1 % of vocabulary) about a term using
other words in BERT’s vocabulary. [...] The trans-
formed versions of these embeddings output by a
BERT model with MLM head are used to make
predictions of masked words. The predictions also
have a distinct tail. This is used to choose the con-
text sensitive signature for a term.”. First of all, the
extraction of the signatures would be redundant in
our case since we have already a list of implant
terms (i.e the glossaries described in Section 4.1.3)
automatically extracted from existing official docu-
mentation and used as search terms. Second, many
of these terms are not, presumably, in the general-
purpose vocabulary of the pre-trained BERT, since
they are very specialized. Essentially, we ended
up with the conclusion that it would be very time-
consuming (if ever possible) to implement some
of the steps in the fully-unsupervised BERT-NER
model. The approach remains indeed inspiring
and could work better or streamlined if we could
re-train BERT on our domain-specific corpus, an
operation that we are unable to carry out at the time
of this publication.

We also explored the possibility of using a BERT
model specifically fine-tuned on our corpus to pre-
dict masked tokens to find candidate implant terms.
However, we realized that such an approach is
dwarfed, because only the words in the vocabulary
of the pre-trained BERT model would be suggested.
If a term, e.g. “shunt”, is not in that vocabulary
or cannot be reconstructed using BERT tokens, it
will never be “discovered” as implant term and will
remain undetected.

In the experiments presented here we build on re-



search carried out at Linköping University in close
cooperation with Linköping University Hospital.
Kindberg (2019) started this exploration and relied
on Word2Vec (Mikolov et al., 2013). In his ex-
periments, carried out on EMRs belonging to the
cardiology clinic (see section 3), Kindberg (2019)
evaluated 500 terms, i.e. 10 search words and their
50 closest neighbours. For the evaluation, all the
terms were divided into 14 categories, and only
three of these categories contained words indica-
tive of implants. All in all, 26.2% of the 500 anal-
ysed words were considered words indicative of im-
plants, i.e. “synonyms, semantically similar terms,
abbreviations, misspelled terms” (p. 13).

For the same task on the same cardiology clinic,
Nilsson et al. (2020) used Swedish BERT (see Sec-
tion 4.1). The results presented in Nilsson et al.
(2020) showed that “[o]ut of the 148 evaluated
queries, 68 query words (46%) in their given con-
text were considered to be clearly indicative for
implants or other harmful objects. 27 query words
(18%) were considered possibly indicative and 53
query words (36%) were considered non-indicative.
For each query that was clearly or possibly indica-
tive, five contextually similar words were identified
which resulted in 475 additional words in given
contexts. Among these 475 additional words, 83
(17,5%) words were considered as clearly indica-
tive in their context, 105 (22%) were considered as
possibly indicative and 287 (60,5%) were consid-
ered non-indicative. 40% of the 475 additional
words identified with the KD-Tree queries and
BERT were deemed to be possibly indicative or
clearly indicative of implants or other harmful ob-
jects.” (p.23-24).

It must be noticed that the results by Kindberg
(2019) and by Nilsson et al. (2020) are not di-
rectly comparable between them since the eval-
uation methods are different. Although we learned
a lot from these two previous studies, we are un-
able to compare our results with theirs, because in
our experiments we create a model on two clinics,
i.e. cardiology and neurology, rather than only on
cardiology. What is more, our evaluation methods
and metrics differ from those utilized by Kindberg
(2019) and Nilsson et al. (2020).

3 Data: Electronic Medical Records

The data used in our experiments is the text of
EMRs from two very different clinics at Linköping
University Hospital, namely the cardiology clinic

and the neurology clinic. The EMRs span over
the latest five years and amount to about 1 million
EMRs, when taken individually, and about 48000
when groped by unique patient (the breakdown of
record distribution in shown in Table 1). These
EMRs vary greatly in length, from just a few words
to hundreds of words. This data has not yet been
fully anonymised, therefore we are unable to re-
lease the datasets at the time of this publication.
However, we will distribute secondary linguistic
data, such as automatically created wordlists on the
project website.

Clinics Words SingleEMRs GroupedEMRs
Cardiology 45 780 055 664 821 34 044
Neurology 25 440 484 314 669 14 526
Total 71 220 539 979 490 48 088

Table 1: Number of words and EMRs per clinic.

4 Method: BERT

Previous methods to represent features as vectors
were unable to capture the context of individual
words in the texts, sometimes leading to a poor
representation of natural language. When using a
traditional text classifier, one of the simplest ways
to represent text is to use bag-of-words (BOW),
where each word (feature) in the text is stored to-
gether with their relative frequency, ignoring word
position of the word in the sentence and in the
text. A more advanced way to represent features is
by using word embeddings, where each feature is
mapped to a vector of numbers. The pioneer of this
approach was a method called Word2Vec (Mikolov
et al., 2013). A big leap forward was achieved
with BERT (Bidirectional Encoder Representations
from Transformers), which uses a multi-headed
self-attention mechanism to create deep bidirec-
tional feature representations, able to model the
whole context of all words in a sequence. Bidi-
rectional refers to the ability of simultaneously
learning left and right word context. Up to BERT,
bidirectionality could be achieved only by model-
ing two separate networks for each direction that
would later be combined, as in (Peters et al., 2018).
A BERT model uses a transfer learning approach,
where it is pre-trained on a large amount of data.
After learning deep bidirectional representations
from unlabelled text, BERT can be further fine-
tuned for several downstream tasks.

BERT is a powerful but complex model. Accord-



ing to the Occam’s razor principle, simplicity must
be preferred whenever possible. To comply to this
principle, we carried out a few preliminary exper-
iments on samples taken from the current dataset
(cardiology + neurology) with approaches less com-
plex than BERT, like distributional semantics based
on BOW3 and Word2Vec4. Results on the samples
showed that BERT performed better than the oth-
ers methods. A comparative study on the whole
dataset (not only samples) is in preparation. These
results, together with additional experiments that
are still in progress, will also be available in the
final project’s report that will be handed in to the
funding body.

In the experiments presented here, we fine-tuned
BERT for focussed terminology extraction and re-
lied on PyTorch (an open source machine learning
framework5) (Paszke et al., 2019) and used the
Huggingface transformers library for BERT (Wolf
et al., 2019) available and ready to use6.

4.1 Swedish BERT
4.1.1 Pre-Trained Model
The pre-trained BERT model used in these experi-
ments is the bert-base-swedish-cased released by
The National Library of Sweden (Malmsten et al.,
2020)7. To provide a representative BERT model
for the Swedish language, the model was trained
on approximately 15-20 gigabyte of text (200M
sentences, 3000M tokens) from a range of gen-
res and text types including books, news, and in-
ternet forums. The model was trained with the
same hyperparameters as first published by Google
and corresponded to the size of Google’s base ver-
sion of BERT with 12 so-called transformer blocks
(number of encoder layers), 768 hidden units, 12
attention heads and 110 million parameters.

A BERT model has a predefined vocabulary.
This vocabulary is a set of words known to the
model and it is used to tokenize words. A token
can in this case be a common word, a common sub-
part of a word or a single letter. Each object in the
vocabulary of the model has a known embedding.
To use the model for finding the embedding of a
new word the model was used to tokenize the word,

3To find synonyms or semantically related words, the text-
stat simil function of the Quanteda R package (Benoit et al.,
2018) was used.

4Package ’word2vec, R wrapper, https://cran.r-
project.org/web/packages/word2vec/word2vec.pdf

5https://pytorch.org/
6https://huggingface.co/transformers/
7https://github.com/Kungbib/swedish-bert-models

which means that it would try to rebuild the word
using as few tokens from the vocabulary as possible.
The pre-trained BERT model used in this study had
a vocabulary of 50325 words. Pre-trained model
hyperparameters are listed in Table 2.

Hyperparemeter Dimensions/Value
Dropout 0.1
Hidden Activation GELU
Hidden Size 768
Embedding Size 512
Attentional Heads 12
Hidden Layers 12
Forward Size 3072
Vocabulary Size 50325
Trainable Parameters 11 · 107

Table 2: Pre-training parameters

4.1.2 Fine-Tuning the Pre-Trained Model:
Phase 1

We call this tine-tuning “Phase 1” because in the
near future we are going to try out different fine-
tuning configurations in order to understand how
to determine the optimal hyperparameters’ settings
for the task at hand. In Phase 1, the decisions about
how to set parameters were made partly based
on the original BERT paper (Devlin et al., 2019),
partly on previous findings based on electronic
health records notes (Li et al., 2019), partly on the
observation of our current data. Hyper-parameters
used for fine-tuning in this study are shown in Ta-
ble 3. We relied on the Adam algorithm with de-
fault values for its hyperparameters as indicated by
(Kingma and Ba, 2014). The pre-processed EMRs
and the pre-trained model were fed into a Python
script.

Hyperparameter Dimension/Value
Epochs 3
Batch Size 32
Block Size 64
Learning Rate 5e− 5

Table 3: Parameters used for fine-tuning

The model was fine-tuned with MLM (Masked
Language Model), a technique which allows bidi-
rectional training. MLM consists in replacing 15%
of the words in each sequence with a [MASK] to-
ken before feeding word sequences into BERT. The
model then attempts to predict the original value of
the masked words, based on the context provided
by the other, non-masked, words in the sequence.
The block size was set to 64, which means that



sequences with fewer than 64 tokens are padded
to meet this length, and sequences with more than
64 tokens are truncated. Actually, the value of 64
is generous since according to our current calcula-
tions the average sentence length in tokens is 12.
The fine-tuning took approximately 15 hours per
clinic to complete using the computing resources
shown in Table 4.

Label Description
CPU Intel Xeon - 12x(E5-2620 v3)
GPU NVIDIA Quadro M4000

[8GB(VRAM)|20GB(Shared)]
Clock Speed 2.40GHz
Memory (RAM) 40GB

Table 4: Details of computing resources.

4.1.3 Discovering Contextually-Similar
Implant Terms

We used the MRI-safety handbook (SMRlink)
available at the hospital website to automatically
create glossaries of implants or implant-related
terms. In these experiments, we used two glossary
versions, an extended version containing 753 terms
that include some noise, i.e. non-implant terms,
and a baseline version containing 461 terms and
less noise, but also fewer terms. The extended glos-
sary was automatically built from several sections
of the documents that can be found in SMRlink.
The baseline version was extracted only from the
headings ”Typ av implatat” and ”Fabrikat / mod-
ell” (see Figure 3). The advantage of the extended
version is the presence of potentially more implant
terms. Neither of the two glossary versions was
validated by domain experts, since we wanted to
limit human intervention as much as possible and
explore the effect of different choices.

Figure 3: The terms in the baseline glossary were ex-
tracted from the headings shown in this picture.

With glossary terms and the corpus, queries were
created. A query is basically an example sentence
containing a glossary term. Our queries are ran-
domly chosen in the corpus. The model retrieves
sentences similar to the queries and extract the term
that is most similar to the glossary term that the
queries exemplify (see Figure 4).

In this paper, we present the results of a BERT
model evaluated using 15 queries for each glossary
term. The queries were randomly chosen and used
to find contextually similar sentences. This BERT
model first identifies sentences in the corpus that
are similar to the queries, then it extracts words in
the BERT “discovered” sentences that have similar
syntactic/semantic role/slot (i.e. the same “seman-
tic role” in a broad sense) as the glossary terms that
were used to build the queries. Since our corpus is
sizeable, we decided that pairwise cosine similarity
metric (brute force) would have been too ineffi-
cient with ordinary computing resources, and not
compliant to the Green NLP paradigm (Derczynski,
2020). To build the search space we used instead
the scikit-learn implementation of the KD-Tree and
BallTree algorithms (Pedregosa et al., 2011), both
with default distance metrics. KDTree (short for k-
dimensional tree) is a binary space partitioning data
structure for organizing points in a k-dimensional
space and it is useful when using multidimensional
search key (e.g. range searches and nearest neigh-
bour searches8). While the KDTree is “a binary
tree structure which recursively partitions the pa-
rameter space along the data axes, dividing it into
nested orthotropic regions into which data points
are filed”, BallTrees “partition[s] data in a series of
nesting hyper-spheres. This makes tree construc-
tion more costly than that of the KD tree, but results
in a data structure which can be very efficient on
highly structured data, even in very high dimen-
sions”. KDTree and BallTree are both memory-
intensive. In order to speed up this part of the
computation, the data was split into chunks. Each
individual chunk was used to generate results for
all queries and then the most contextually similar
words and sentences across all of the chunks were
selected for the final results. The results used in
this paper were generated with chunks of 50000
tokenized sentences at the time.

4.2 Evaluation

To judge whether a term discovered using this
BERT model is indicative of the presence of im-
plants, special domain knowledge is required. In
some cases, it may be obvious that a term indicates
implants. In other cases, it may be less obvious
due to very domain-specific sublanguage. For this
reason, manual evaluation of BERT discoveries
was carried out by two MRI-physicists from the

8https://scikit-learn.org/stable/modules/neighbors.htm



Figure 4: A mock-up of the results retrieved by a query: ‘Sökord’ (en: search term) is a glossary term. ‘I kontext’
(en: in context) is a query where the search term appears. The model extract 7 sentences similar to the query and
extracts terms contexually similar to the glossary term.

Radiology clinic at Linköping University Hospital,
who assessed independently the terms discovered
by the BERT model. For the evaluation with used
the results obtained with KDTree and the extended
glossary, which amount to 4636 BERT terms. More
specifically, we started up with 753 glossary terms
(unigrams) including noise; for each glossary term,
a set of 15 queries was created (15 is an arbitrary
choice); KDTree was used to search the vector
space from which we extracted 7 nearest neigh-
bours for a given query (7 is an arbitrary choice)
(see Figure 4); then we merged the results for all
the queries together and removed duplicates.
The two MRI-physicists received an excel file con-
taining the list of terms to be assessed without
any context, and short instructions. They were
instructed to judge whether the term can give an
indication that the patient has or has had an implant.
They were asked to use the following ratings on
a three-degree scale: Y = yes, it gives me an indi-
cation that the patient has or has had an implant;
N = No, it DOES NOT give me any indication that
the patient has or has had an implant; U = unsure,
the term could or could not give me an indication
of an implant, but I cannot decide without more
context. The inter-rater agreement was then com-
puted on their judgements. Results are presented
in the next section.

5 Results and Evaluation

Inter-Rater Agreement. We measured the inter-
rater agreement between the two MRI-physicists

by using percentage (i.e. the proportion of agreed
upon documents in relation to the whole without
chance correction), the classic unweighted Cohen’s
kappa (Cohen, 1960) and Krippendorff’s alpha
(Krippendorff, 1980) to get a straightforward in-
dication of the raters’ tendencies.

Cohen’s kappa assumes independence of the two
coders and is based on the assumption that “if
coders were operating by chance alone, we would
get a separate distribution for each coder” (Artstein
and Poesio, 2008). This assumption intuitively fits
our expectations. Krippendorff’s alpha is similar
to Cohen’s kappa, but it also takes into account
the extent and the degree of disagreement between
raters (Artstein and Poesio, 2008).

Terms Percentage Cohen’s Krippendorff’s
Kappa Alpha

4636 75% 0.575 0.573

Table 5: Inter-rater agreement on 4636 BERT terms.

Rater Y N U
Rater-1 1 426 (30.8%) 2 701 (58.2%) 509 (11%)
Rater-2 1 321 (28.5%) 2 395 (51.5%) 920 (20%)

Table 6: Breakdown by rater.

Tables 5 and 6 show the breakdown of the inter-
rater agreement of the 4636 terms discovered by
BERT. The raters agree on 3475 terms, of which
1088 were assessed to be indicative implant terms
(approx. 23.5%), 2163 terms were assessed not



to be indicative of implants, and for 224 terms
both raters agreed on being “unsure”. The raters
disagreed on 1161 terms. This means that BERT
helped discover 75% of terms on which the two
raters are concordant (i.e. 1088+2163+224), and
25% on which they are discordant (see Figure 5).
Out of the 1088 BERT terms indicative of implants,
about 900 were not in the extended glossary and
more than 1000 were not present in the baseline
glossary, e.g. ‘carillon-device’ or ‘cochlea’. There-
fore these BERT terms make a useful addition to
the glossaries. Out of 2163 non-indicative BERT
terms, about 2000 were not in the glossaries, which
suggests that the level of noise in the glossaries is
relatively small.

Figure 5: Breakdown: concordant/discordant assess-
ments by the two raters.

Overall, the values in Table 5 show that both kappa
and alpha coefficients are approx. 0.57, and both
these values indicate a “moderate” agreement ac-
cording to the magnitude scale for kappa (Sim and
Wright, 2005), and the alpha range (Krippendorff,
2011). The moderate agreement between the two
domain experts may suggest that selective experi-
ence and/or expertise could play a role in recogniz-
ing implant terms, and BERT terms can contribute
in alerting professionals about the presence of im-
plants that could otherwise be overlooked.

Gold Standard and Term Clusters: Intra-
cluster Cleanliness. The evaluateD BERT terms
are the first building block of a gold standard for
this task. We use this “ground truth” to assess the
quality of the individual term clusters. In this con-
text, a term cluster is a group of words semantically-

related to a glossary term used to build queries
(see Section 4.1.3). Examples of term clusters are
shown in the Appendix.

Since we will never know the number of True
Negatives and False Negatives in this task, we can-
not use traditional evaluation metrics. For this
reason, we used a metric that we call “term clus-
ter cleanliness” (short cleanliness) to roughly as-
sess the linguistic quality and the term relatedness
within a cluster.

Cleanliness is the proportion of True Positives
(TP) with respect to the numbers of terms in the
cluster, i.e.:
Cleanliness= TP/(TP + FP + U + Disc + New)
where:
TP (True Positives) is the number of terms that are
classified as indicative of implants by both annota-
tors in the gold standard.
FP (False Positives) is the number of terms that
are classified as non-indicative of implants by both
annotators in the gold standard;
U (Unsure) is the number of terms that both anno-
tators agree on being unsure about whether they
are indicative of implants or not;
Disc (Discordant) is the number of terms in the
gold standard on which the annotators disagree
upon.
New is the number of terms that are not in the gold
standard but are in a cluster.

This metric is simple, but handy. Additionally,
numbers can be easily swapped in the formula, so
that it is possible to account for the proportion of
new terms (Novelty) or Undecidedness, etc. For
instance:
Novelty = New/(TP + FP + U + Disc + New)
Undecidedness = U/(TP + FP + U + Disc + New)

The cleanliness scores can be used to rank the
term clusters and to set a threshold to trim out un-
interesting terms (Figure 6 shows the top-ranked
clusters returned by BallTree with extended glos-
sary).

6 Discussion

The combination of searching the result space and
the two versions of the glossary show that differing
clusters are produced for the same glossary term
(see the results for the glossary term ‘ventil’ in
the Appendix, Figures A1, A2, A3 and A4). One
possible way to unify these nuanced results would
be to select the cluster with the highest cleanliness
score for the same glossary term. For instance, for



Figure 6: Top-ranked term clusters (BallTree, extended
glossary).

the term ‘ventil’, the best cluster is the one shown
in Figure A2, since it has the best score.

Undeniably, the domain expertise is of funda-
mental importance for the refinement of the model,
since the model sieve through extremely noisy tex-
tual data. The domain expert evaluation has helped
us to identify the kind of irrelevant words the model
retrieves. Error analysis indicates that families of
irrelevant words negatively affect the quality of the
clusters, e.g. named entities, like Ann-Christin (see
Figure A5 in the Appendix) and general medical
terms, like aneurysm (see Figure A6 in the Ap-
pendix). The next step is then to filter out semantic
families of words that create noise in the results.
However, this operation is not straightforward since
there are some apparently non-indicative words
(like ‘obs’, en: attention) that helped in the discov-
ery of implant terms because they frequently co-
occur with them (see Figure A7 in the Appendix).
This means that ranking the term clusters based
only on their cleanliness is helpful, but it does not
tell the whole story about how indicative words can
be in domain-specific contexts.

7 Conclusion

In this paper, we presented results of a BERT model
for focused terminology extraction. The model was
devised to discover terms indicative of implants in
Swedish EMRs. Although the task is challenging,
manual evaluation shows that the approach is re-
warding, since a solid number of indicative terms
were discovered by BERT. We used these BERT
discoveries assessed by domain experts to create
the first building block of a gold standard that we
will use to evaluate future versions of our model.
We plan the following:

• annotation of the “new” terms (cyan spheres
in the figures in the Appendix) by the two
rater; these terms and their annotation will be
appended to the current gold standard;

• the removal of named entities mentioned in
the texts of the EMRs;

• the removal of general medical terms;

• the cleansing of the noise in the glossaries us-
ing the non-indicative words annotated during
the creation of the gold standard;

• the conflation of the cleaned baseline and ex-
tended glossary into a single one;

• a deeper understanding of the effect of fine-
tuning parameters (e.g. the effect of a smaller
block size);

• a more advanced search method of the result
space to overcome the fragmentation of the
corpus in data parts (chunks) of 50000 tok-
enized sentences at the time in order to avoid
the re-merging of all the results at the end of
this process.
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Appendix

The graphs in this section are created with the R package Igraph9(Csardi and Nepusz, 2006).

Figure A1: KDTree, extended glossary: BERT terms related to ‘ventil’ (en: valve). Cleanliness: 0.70
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc. The length of the edges represents the
distance of a BERT term from the glossary term.

Figure A2: BallTree, extended glossary: BERT terms related to ‘ventil’ (en: valve). Cleanliness: 0.88
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc, cyan spheres are words that are not in
the gold standard. The length of the edges represents the distance of a BERT term from the glossary term.

9https://cran.r-project.org/web/packages/igraph/index.html



Figure A3: KDTree, baseline glossary: BERT terms related to ‘ventil’ (en: valve). Cleanliness: 0.67
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc, cyan spheres are words that are not in
the gold standard. The length of the edges represents the distance of a BERT term from the glossary term.

Figure A4: BallTree, baseline glossary: BERT terms related to ‘ventil’ (en: valve). Cleanliness: 0.70
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc. The length of the edges represents the
distance of a BERT term from the glossary term.



Figure A5: BallTree, extended glossary: BERT terms related to ‘implant’ (in English in the glossary). Clean-
liness: 0.5
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc, orange squares are terms on which
both raters are unsure about, cyan spheres are words that are not in the gold standard. The length of the edges
represents the distance of a BERT term from the glossary term.

Figure A6: BallTree, extended glossary: BERT terms related to ‘aneurism’. Cleanliness: 0.0
Legend: blank circles are TPs, blank squares are FPs, grey squares are Disc, orange squares are terms on which
both raters are unsure about, cyan spheres are words that are not in the gold standard. The length of the edges
represents the distance of a BERT term from the glossary term.



Figure A7: BallTree, extended glossary: relatedness between ‘codman’ and ‘obs


