
Granska API – an Online API for
Grammar Checking and Other NLP Services

Jonas Sjöbergh
Theoretical Computer Science, KTH

Stockholm, Sweden
jsh@kth.se

Viggo Kann
Theoretical Computer Science, KTH

Stockholm, Sweden
viggo@nada.kth.se

Abstract

We present an online API to access a num-
ber of Natural Language Processing services
developed at KTH1. The services work on
Swedish text. They include tokenization, part-
of-speech tagging, shallow parsing, compound
word analysis, word inflection, lemmatization,
spelling error detection and correction, gram-
mar checking, and more. The services can be
accessed in several ways, including a RESTful
interface, direct socket communication, and
premade Web forms. The services are open
to anyone. The source code is also freely avail-
able making it possible to set up another server
or run the tools locally. We have also evalu-
ated the performance of several of the services
and compared them to other available sys-
tems. Both the precision and the recall for the
Granska grammar checker are higher than for
both Microsoft Word and Google Docs. The
evaluation also shows that the recall is greatly
improved when combining all the grammar
checking services in the API, compared to any
one method, and combining services is made
easy by the API.

1 Introduction

A number of Natural Language Processing (NLP)
tools for analysis of Swedish text have been devel-
oped at KTH (Kann, 2010). Most of the tools were
developed in projects focused on grammar check-
ing: “Algoritmer för svenska språkverktyg” (“Algo-
rithms for Swedish language tools”), “Svensk gram-
matikgranskning” (“Swedish grammar checking”),
and “CrossCheck – svensk grammatikkontroll för
andraspråksskribenter” (“CrossCheck – Swedish
grammar checking for second language writers”).
This lead to a focus on tools that are useful for
grammar checking, but low level language analysis
tools useful in other applications are also included.

1A short version of this paper was presented at the SLTC-
2020 conference.

The source code for the tools has been freely
available since the tools were developed, and any-
one is free to install and use them locally. Now we
have also made an online API available2. It can
be used to access the tools running as services on
a server at KTH, and these services are also open
for anyone to use. They can be used by a user by
hand, typing text or copying text from some other
program, and by programs using the services to do
some analysis they need.

We have also built an example application that
uses the services to create a graphical text explo-
ration environment, and we have evaluated some
of the tools provided in the API, comparing them
to other available systems that perform the same
service.

2 Available Services

The available services can be divided into three
types of services: low-level or preprocessing NLP
tools that can be used to build more advanced ser-
vices, tools to help when developing and evaluating
NLP tools, and high-level NLP services that are
directly useful to end users. It is still possible to
build new tools on top of the high-level services.

The low-level services in the Granska API are:

Tokenization The Granska tokenizer tokenizes
text into words and sentences. It is integrated
in the Granska tagger and in the Granska
grammar checker below, but it is also possible
to build a stand-alone tokenizer.

PoS Tagging The Granska tagger (Carlberger and
Kann, 1999) does part-of-speech tagging of
Swedish text. It is a Hidden Markov Model
tagger trained on the SUC corpus (Ejerhed
et al., 1992) using a slightly modified version
of the SUC tag set. The tagger is integrated

2https://skrutten.csc.kth.se/granskaapi/

in the Granska grammar checker but can also
run as a stand-alone application.

PoS Tagging without context Taggstava (Kann,
2010) is a tagger that assigns part-of-speech
tags to words without using context informa-
tion. It uses inflection rules for Swedish to
determine what inflected form a word could
be. No disambiguation is done for ambiguous
words, all possible tags are returned. Tagg-
stava uses the same rules and reference data
as the spelling error detection program Stava
below.

Shallow Parsing The GTA parser (Knutsson et al.,
2003) does shallow parsing of Swedish text
based on hand written rules. It identifies
clause boundaries and phrases. The internal
structures of phrases are identified, e.g. a noun
phrase being part of a prepositional phrase, but
a full tree for the whole sentence is not built.

GTA is built to be robust to noisy data (i.e.
text with many errors) since it is built for and
used in the grammar checker Granska below,
which is expected to run on texts with possibly
very many errors in them.

For convenience, there are also two services
that return subsets of the GTA information,
one that returns only clause boundaries, and
one that returns only the phrase structure.

Compound Word Analysis SärStava (Sjöbergh
and Kann, 2004) is a tool that gives the most
likely interpretation of a compound word, or
all possible interpretations. Possible interpre-
tations are found using the Stava compound
word analysis methods. Then statistical data
and some heuristics are used to decide which
interpretation is most likely for ambiguous
compounds. No methods using the context of
the word are used, though.

Word Inflection The Granska Inflector inflects
Swedish words. It can generate a specific in-
flected form or a list of all possible inflections.

Lemmatization This service uses the Granska tag-
ger to find the lemma form of words.

Word-Tag-Lemma Several other services expect
the input to be triples of word, part-of-speech
tag, and lemma form of the word. For con-
venience, a service that takes plain text and

provides word-tag-lemma triples, by calling
the Granska tagger, is also provided.

There is currently only one service in the devel-
opment and evaluation tools category. Other tools
for evaluating NLP tools are available to run lo-
cally, but have not been made available as online
services yet. The available tool is:

Realistic Spelling Error Generation Missplel
(Bigert et al., 2003) is a tool that automatically
inserts spelling errors in texts. Different
types of errors can be simulated, for example
keyboard mistypes where a neighboring key
is pressed by mistake or sound-alike errors
where the writer may not know the correct
spelling of a word they know how to say.

Missplel can be used to automatically evalu-
ate the robustness of other NLP systems by
showing how the performance degrades when
there are errors in the text. For example, an
evaluation can be done by running a parser on
a test text and then running it on the same text
with added errors. Ideally, the parser should
produce similar output the second time, since
the “intended” meaning of the text is the same.
This way the robustness can be evaluated with-
out using any annotated data.

The high-level services are all spelling and gram-
mar checking services, since the tools were built
in research projects focused on this. The available
services are:

Spelling Error Detection and Correction Stava
(Domeij et al., 1994) is a very powerful
spelling correction tool for Swedish that finds
spelling errors and suggests corrections. Stava
handles the very productive compounding
in Swedish using rules for how compounds
can and cannot be created in Swedish. The
compound analysis can also be accessed
separately, as mentioned above. In Swedish
it is very common to create new compound
words in normal text, and without some form
of compounding analysis there are normally
very many false alarms from spelling error
detection tools.

Grammar Checking using Rules The Granska
(Domeij et al., 2000) system detects grammat-
ical errors in Swedish text based on manually

Goal: get the most likely interpretation of the compound “glasstrut”.
API call: https://skrutten.csc.kth.se/granskaapi/compound/best/glasstrut
Output: glasstrut glass|strut

Goal: get all possible interpretations of the compound “glasstrut”, in JSON.
API call: https://skrutten.csc.kth.se/granskaapi/compound/json/all/glasstrut
Output: ["word":"glasstrut", "parts":["glas|strut", "glass|strut", "glass|trut"]]

Goal: get phrase structure in the sentence “GTA kan analysera svensk text.”.
API call: http://skrutten.csc.kth.se/granskaapi/chunk?text=GTA+kan+analysera+svensk+text+.
Output: GTA NPB, kan VCB, analysera VCI, svensk APMINB|NPB, text NPI, . 0

Figure 1: Example API calls and the corresponding outputs

written error detection rules. The rule lan-
guage (Knutsson et al., 2001) is quite pow-
erful and the rule writer has access to all
the information provided by the tools men-
tioned above. Rules can for example be writ-
ten to allow suspicious things if they cross a
phrase boundary (to reduce false alarms), or
to change the inflected form of a suspicious
word to a form more suitable to the surround-
ing context using the inflector above, etc.

Extra rules can be added to each API call.
These can be used to detect new types of errors
not covered by the standard rules or to influ-
ence the behavior of Granska (e.g. by adding
more parsing rules). Here is an example of a
simple rule:

altcorr@kong{
X(wordcl=dt),
Y(wordcl=nn & num!=X.num)
-->

corr(X.form(num:=Y.num))
corr(Y.form(num:=X.num))
action(scrutinizing)}

This rule finds places where a determiner
(word class is “dt”) is followed by a noun
(word class “nn”), but they have different num-
ber, i.e. it finds agreement errors since deter-
miners and nouns should normally have the
same number in Swedish. It then suggests
two possible corrections, changing the num-
ber of the determiner or changing the number
of the noun. The suggested corrections are
generated with the inflector above.

Grammar Checking using PoS n-grams
ProbCheck (Bigert and Knutsson, 2002)
detects grammatical errors in text using

statistical analysis of part-of-speech n-grams.
Based on n-gram statistics from correct text,
it finds part-of-speech sequences that are
rare in the reference data. It also uses the
GTA parser above, since phrase and clause
boundaries can cause very rare PoS n-grams
even in correct text and thus lead to false
alarms. ProbCheck usually runs integrated in
Granska but running only ProbCheck is also
possible.

ProbCheck was created in a project focused on
helping second language learners. Learners of
a language make many unpredictable errors
that it can be hard to write error detection rules
for. There are also generally a lot of errors,
and thus not much correct text as context to
base error detection rules on.

Grammar Checking using Machine Learning
SnålGranska (Sjöbergh and Knutsson, 2005)
detects grammatical errors using machine
learning trained on texts with synthetic errors
added. By itself it does not perform as well
as Granska, but it does detect errors that
Granska does not detect, and it is possible to
use both systems together to get improved
coverage (Bigert et al., 2004).

3 Ways to Access the Services

All the services mentioned in the previous section
can be accessed online. There are simple Web
forms where you can enter words or text by hand
(or by copy-paste from other applications) and see
what the tools can do.

There is also a RESTful API to access the ser-
vices. This allows typing in requests in the URL bar
of a Web browser by hand, but is mainly intended
for other programs to automatically use the services
for language processing tasks they may need. Most

Figure 2: FörHandsGranska, built on top of the API services. Here working as a text editor with spelling and
grammar checking support, letting the user use suggested corrections through simple clicks.

Figure 3: FörHandsGranska, showing linguistic analysis. Words can be colored based on part-of-speech, phrase
structure, or clause structure. Compound word analysis, possible inflections, etc., are also shown.

services can send back the reply in either plain
text form, HTML, JSON, or XML. Figure 1 shows
example API calls and the corresponding outputs.

It is also possible to access the services using
socket communication. When communicating with
the services directly using a socket, most services
will only return the raw output of the original tool
(for example not provide the result in JSON).

If no input is given, each service will display
a Web page with information on how to call the
service. An example Web form that uses the service
is shown, and this can be used as a reference to see
what input is expected, how to format the input,
etc. A few example words or sentences are also
provided to give a quick overview of what typical
input and output can be expected to look like.

The API allows building new tools based on the
services, creating new interfaces to the services,
or integrating the services into existing tools (e.g.
an editor or word processor). If an online service
is not suitable, for example for a system that is
expected to run offline, the source code for all the
tools is also freely available. This makes it possible
to install any tool and run it locally, or to install
tools and set up a new server that can provide the
same services.

4 Example Application based on the
Services

We have created an example application us-
ing a number of the services described above.

True Diag. False Total False Precision Pseudo
System Pos. Errors Pos. Reports Neg. (%) Recall (%)
Granska 211 4 203 414 297 51 42
ProbCheck 130 - 468 598 378 22 26
SnålGranska 112 103 736 848 396 13 22
All Granska API 421 86 1262 1683 87 25 83
MS Word 64 2 270 334 444 19 13
Google Docs 107 5 663 770 401 14 21

Table 1: Evaluation on text with few errors (published novels). 508 errors annotated in 101,279 tokens. Pseudo
recall (and False Negatives) is calculated based on all the errors found by any system, but since there are also
errors not found by any system the true recall is lower. “Diag. Errors” are error reports where there is an error in
the text but the diagnosis is wrong, for example reporting an agreement error when it is actually a spelling error.
ProbCheck does not give error diagnoses.

True Diag. False Total False Precision Pseudo
System Pos. Errors Pos. Reports Neg. (%) Recall (%)
Granska 978 85 581 1559 888 63 52
ProbCheck 341 - 507 848 1525 40 18
SnålGranska 497 428 763 1260 1369 39 27
All Granska API 1579 374 1694 3273 287 48 85
MS Word 562 50 376 938 1304 60 30
Google Docs 360 8 407 767 1506 47 19

Table 2: Evaluation on blog texts, 1,866 errors annotated in 97,645 tokens. Pseudo recall (and False Negatives)
is calculated based on all the errors found by any system, but since there are also errors not found by any system
the true recall is lower. “Diag. Errors” are error reports where there is an error in the text but the diagnosis is
wrong, for example reporting an agreement error when it is actually a spelling error. ProbCheck does not give
error diagnoses.

FörHandsGranska3 is a graphical text exploration
tool. It can mark writing errors in different col-
ors and suggest corrections, working as an editor
with built in spelling and grammar checking tools.
Errors in the text can be replaced with corrected
text by simply clicking on suggestions from the
grammar checking tools.

It can also add linguistic markup, coloring words
based on their part-of-speech, underlining different
types of phrases in different colors, or show clause
boundaries. It also shows all inflections of a word,
the compound analysis of compound words, and
more. In this way, it can be used as a linguistic
exploration tool or language learning tool. Interac-
tion is also possible through for example clicking
on a listed inflected form to change the inflection
of the word in the original text.

It is possible to show both suspected writing
errors and linguistic markup at the same time.
Adding more rules in the Granska rule language
is also supported. Two example screenshots of

3https://skrutten.csc.kth.se/fhg/

FörHandsGranska are shown in Figures 2 and 3.
FörHandsGranska also allows quick lookup in

other online services not provided by the Granska
API, such as the SAOB dictionary, the Lexin search
service, or concordance lookup in the Korp service.

FörHandsGranska is written in JavaScript and
is basically a graphical interface that calls the ser-
vices of the Granska API when language analysis
is needed.

5 Evaluation

There have been many evaluations of the different
tools. For evaluations of the individual tools, we
refer to the respective publications cited above.

We have also done a new evaluation using the
tools through the Granska API. We have evaluated
the Granska grammar checking tool on Swedish
text. Since Granska also uses almost all of the other
tools in the API, this gives an overview of how well
all the tools can work together.

We fed unannotated Swedish text to the Granska
API. For comparison, we also fed the same text

to the spelling and grammar checking tool inte-
grated in Microsoft Word 2016, the spelling and
grammar checking tool in Google Docs, and the
grammar checkers ProbCheck and SnålGranska.
We also combined all the grammar checking ser-
vices in the Granska API (Granska, ProbCheck,
and SnålGranska) as one grammar checking ser-
vice to see how much the recall improves by using
several methods that hopefully complement each
other.

All error reports from the grammar checkers
were manually annotated as correct or not, but we
did not manually check the text for errors not found
by any of the grammar checking tools. A quick
manual check of a small sample of the evaluation
data showed that there are indeed errors that are
missed by all the grammar checking tools.

The evaluation texts used all come from the
Språkbanken corpus resources4. There are many
corpora available for download, and there is a
search interface with NLP tools that can be used to
search the available corpora (Borin et al., 2012).

Table 1 shows the evaluation results on texts with
few errors to find, in this case texts from published
novels. Since there are few true errors to be found,
precision can be expected to be low.

Table 2 shows the evaluation results on blog
texts, which have more errors than the published
novels. As expected, all grammar checking meth-
ods achieve higher precision in this test set.

The results support the idea that the different
grammar checkers complement each other (as men-
tioned in Section 2, ProbCheck was explicitly cre-
ated to complement Granska) since no grammar
checker found even half of the total errors in the
published novels and only one system found just
over half the errors in the blog texts, when com-
pared to all errors found by all the systems in total.

Using the Granska API it is easy to combine the
output from any system included in the API. Com-
bining the three services provided in the Granska
API gives much higher recall than any single sys-
tem achieves, as seen in Tables 1 and 2, though the
precision is of course lower than the precision of
the highest performing individual system.

The results also indicate that the grammar check-
ing methods in the Granska API perform competi-
tively when compared to other grammar checking
systems for Swedish. Both the precision and the
recall of the Granska grammar checker is higher

4https://spraakbanken.gu.se/en/resources

than those of the grammar checking methods in
both Microsoft Word and Google Docs in these test
sets.

6 Related Work

There are other NLP APIs, both online APIs and
APIs for using tools locally. Most APIs are for
English but APIs for other languages are also avail-
able.

For Swedish, the Sparv corpus annotation
pipeline (Borin et al., 2016) has an online API.
It supports tokenization, lemmatization, part-of-
speech tagging, compound analysis, dependency
parsing, named entity recognition, and more. Sparv
also supports languages other than Swedish.

The SVENSK project (Gambäck and Olsson,
2000) collected NLP tools for Swedish, includ-
ing part-of-speech tagging, parsing, text classifica-
tion, and more. Resources from different sources
were integrated into one consistent framework us-
ing GATE (Cunningham et al., 1996).

7 Conclusions

We provide an online API to access NLP services
for Swedish text. Both low level services like part-
of-speech tagging and high level services like gram-
mar checking are provided. The services are freely
available online, with several ways to access them.
The source code is also freely available, allowing
users to set up their own servers or run the tools
locally. The tools can be used by hand or integrated
in other programs. As an example of what can be
done by using the API, we have also created an
online application for interactive text exploration
that uses the API for all linguistic analysis needed.

We evaluated some of the higher level services,
that in turn use most of the low level services, com-
paring them to other available systems. The results
show that the performance is improved by combin-
ing several services, and that the provided services
in themselves perform competitively compared to
other available systems. Combining systems is easy
using the provided API.

References
Johnny Bigert, Linus Ericson, and Antoine Solis. 2003.

Missplel and AutoEval: Two generic tools for auto-
matic evaluation. In Proceedings of Nodalida 2003,
Reykjavik, Iceland.

Johnny Bigert, Viggo Kann, Ola Knutsson, and Jonas
Sjöbergh. 2004. Grammar checking for Swedish

second language learners. In Peter Juel Henrichsen,
editor, CALL for the Nordic Languages, pages 33–
47. Samfundslitteratur.

Johnny Bigert and Ola Knutsson. 2002. Robust error
detection: A hybrid approach combining unsuper-
vised error detection and linguistic knowledge. In
Proceedings of Romand 2002, Robust Methods in
Analysis of Natural Language Data, pages 10–19,
Frascati, Italy.

Lars Borin, Markus Forsberg, Martin Hammarstedt,
Dan Rosén, Roland Schäfer, and Anne Schumacher.
2016. Sparv: Språkbanken’s corpus annotation
pipeline infrastructure. In Proceedings of SLTC
2016, Umeå, Sweden.

Lars Borin, Markus Forsberg, and Johan Roxen-
dal. 2012. Korp - the corpus infrastructure of
Språkbanken. In Proceedings of LREC 2012, pages
474–478, Istanbul, Turkey.

Johan Carlberger and Viggo Kann. 1999. Implement-
ing an efficient part-of-speech tagger. Software –
Practice and Experience, 29(9):815–832.

Hamish Cunningham, Yorick Wilks, and Robert J.
Gaizauskas. 1996. GATE – a general architecture
for text engineering. In COLING 1996 Volume
2: The 16th International Conference on Computa-
tional Linguistics.

Richard Domeij, Ola Knutsson, Johan Carlberger, and
Viggo Kann. 2000. Granska – an efficient hybrid
system for Swedish grammar checking. In Proceed-
ings of Nodalida ’99, pages 49–56, Trondheim, Nor-
way.

Rickard Domeij, Joachim Hollman, and Viggo Kann.
1994. Detection of spelling errors in Swedish not
using a word list en clair. Journal of Quantitative
Linguistics, 1:195–201.

Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and
Magnus Åström. 1992. The linguistic annota-
tion system of the Stockholm-Umeå Corpus project.
Technical report, Department of General Linguis-
tics, University of Umeå (DGL-UUM-R-33), Umeå,
Sweden.

Björn Gambäck and Fredrik Olsson. 2000. Experi-
ences of language engineering algorithm reuse. In
Proceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens, Greece.

Viggo Kann. 2010. KTHs morfologiska och lexiko-
grafiska verktyg och resurser (Morphological and
lexicographical tools and resources from KTH). Lex-
icoNordica, 17:99–117. QC 20120126.

Ola Knutsson, Johnny Bigert, and Viggo Kann. 2003.
A robust shallow parser for Swedish. In Proceedings
of Nodalida 2003, Reykjavik, Iceland.

Ola Knutsson, Johan Carlberger, and Viggo Kann.
2001. An object-oriented rule language for high-
level text processing. In NoDaLiDa’01 - 13th
Nordic Conference on Computational Linguistics,
Uppsala, Sweden.

Jonas Sjöbergh and Viggo Kann. 2004. Finding the cor-
rect interpretation of Swedish compounds a statisti-
cal approach. In Proceedings of LREC-2004, pages
899–902, Lisbon, Portugal.

Jonas Sjöbergh and Ola Knutsson. 2005. Faking er-
rors to avoid making errors: Very weakly supervised
learning for error detection in writing. In Proceed-
ings of RANLP 2005, pages 506–512, Borovets, Bul-
garia.

