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Abstract

Integrating adaptivity into Task-Based Lan-
guage Teaching requires exercises that trans-
mit a specific content but whose complexity is
adjusted to the learner’s level. Thus, exercises
of varying complexity based on the same text
are needed. Revising generated exercise vari-
ants is time consuming and redundant where
the same underlying linguistic annotations can
be used for exercise generation. We present a
fully implemented approach to generate gen-
eralized exercise specifications as an interim
step before turning them into concrete exer-
cises, as well as an interface for efficient re-
viewing of the specifications.

1 Introduction

For Computer-Assisted Language Learning
(CALL), Task-Based Language Teaching (TBLT)
can serve as a well-motivated, current pedagog-
ical framework (Lai and Li, 2011). Putting a
premium on the functional use of language with
a focus on meaning, the TBLT perspective can
offer a less monotonous learning experience
than traditional grammar-focused instruction
with decontextualized exercises (Doughty and
Long, 2003). However, creating complex learning
cycles with functional final tasks preceded by
step-wise pre-task activities supporting practice
of the task-essential language aspects requires
considerable human effort. Form-based exercises,
on the other hand, can be generated automatically
in rule-based approaches or from authentic texts
(Perez-Beltrachini et al., 2012).

Pursuing a kind of hybrid approach, Li
et al. (2016) found that Task-Supported Language
Teaching (TSLT), where working on a task fol-
lows explicit instruction, yielded better learning
outcomes for grammar topics targeted in a cy-
cle. Following a Presentation-Practice-Production
(PPP) Model as backbone (Ur, 2018), TSLT ex-
plicitly teaches new concepts in the Presenta-

tion phase, uses traditional form-focused exercises
in the Practice phase and more meaning-focused
practice in the final task of the Production phase.
In order to best support scaffolded learning prepar-
ing students for the Production task, the exercises
in the Practice phase should preferably cover vo-
cabulary and grammar topics relevant to that task.

The limited time available to teachers is not
only an issue for the compilation of teaching ma-
terials, but also for taking into account the individ-
ual needs for additional support or practice (Aftab,
2015). Intelligent CALL systems can overcome
this lack of differentiation through micro- and
macro-adaptivity (Rus et al., 2015). Micro-
adaptivity supports learners through scaffolded
feedback when necessary. Macro-adaptivity adap-
tively selects and sequences exercises in the stu-
dent’s Zone of Proximal Development. The exer-
cises thus provide practice opportunities for lin-
guistic constructs where a learner struggles but
can successfully complete the activity (when scaf-
folded). In TSLT, approaches to macro-adaptivity
are especially valuable in the Practice phase in or-
der to achieve effective and efficient procedural-
ization of language knowledge.

Macro-adaptivity usually relies on large pools
of exercises in order to cover the vast space of
possible ability levels a student can have across
a range of linguistic constructs (Katinskaia et al.,
2018). Since manual compilation of the required
number of exercises is not feasible, automatic gen-
eration of exercises for the Practice phase become
not only possible but necessary. While automati-
cally generating exercises from authentic texts has
been explored in various systems, they lack a sys-
tematic approach to generating large sets of ex-
ercises of varying complexity from source texts.
In addition, proceduralization of linguistic knowl-
edge requires exposure in a variety of contexts
such as different syntactic structures, questions, or
negation. Adaptive sequencing must therefore rely
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on analyzing linguistic structures and differences
in complexity of the source texts in order to pro-
vide the required variability and serve the needs of
all students (Pandarova et al., 2019). This, how-
ever, does not allow instructors to also practice
specific vocabulary or content at the same time.

Focusing on beginning to intermediate learners
of English, the approach suggested by Heck and
Meurers (2022a) fills this gap by systematically
parameterizing exercises so that a single specifi-
cation based on one sentence can be used to gen-
erate a range of exercises at varying levels of com-
plexity. The approach, however, requires manu-
ally written specifications. While being more effi-
cient than creating each exercise individually, the
specifications still need to be composed manually,
with the additional drawback of lacking intrinsi-
cally motivating authenticity (Peacock, 1997). We
overcome this limitation by automatically gener-
ating the exercise specifications from authentic
texts. Since this process might introduce errors,
the generated specifications need to be reviewed
and possibly revised. When conducting revisions
at this stage of the exercise generation process,
one only needs to check a single abstract speci-
fication instead of dozens of spelled out exercises.
However, since each specification contains exer-
cise elements relevant to a range of different exer-
cise types, there is no readily-available authoring
interface. We therefore introduce a prototype for a
web-based interface serving this purpose.

In this paper, section 2 first reviews exist-
ing approaches to exercise generation in terms
of their potential support for macro-adaptive sys-
tems. Section 3 describes the implementation of
our approach with a focus on the user’s interaction
with the system throughout the exercise generation
workflow. Section 4 evaluates the implementation
before section 5 summarizes and concludes with
an outlook.

2 Related Work

Addressing the shortcomings of prefabricated lan-
guage material generally used in text-books, Au-
thentic Intelligent CALL focuses on using authen-
tic texts in language learning (Meurers, 2020). In
particular, automatically generating grammar ex-
ercises from authentic texts has received consider-
able attention in the past as a means to meet the
demand for practice material in Intelligent Lan-
guage Tutoring Systems (ILTS) (Malafeev, 2015).

Closed activity types such as Multiple Choice
(MC) are especially popular due to their abil-
ity to automatically score the exercises based on
the very restricted space of possible learner an-
swers (Tafazoli et al., 2019), yet supported exer-
cise formats vary from one system to the other.
A number of tools integrate a variety of differ-
ent formats: MIRTO automatically generates Fill-
in-the-Blanks (FiB) as well as Mark-the-Words
(MtW) exercises (Antoniadis et al., 2004); Arik-
Iturri can generate MC, Error Detection, FiB and
Word Formation exercises (Aldabe et al., 2006);
an extension of the language aware search Engine
FLAIR1 (Heck and Meurers, 2022b) covers a wide
range including FiB, MC, MtW, Memory, Jumbled
Sentences and Drag and Drop exercises; Saku-
mon (Hoshino and Nakagawa, 2008) and Cloze-
Fox (Jozef and Sevinc, 2010) support cloze ex-
ercises in FiB as well as MC format; WERTi
(Meurers et al., 2010) and its multilingual exten-
sion View (Reynolds et al., 2014) in addition fea-
ture MtW exercises, the Language Exercise App
Sentence Shuffling activities (Pérez and Cuadros,
2017), and Ferreira and Pereira Jr. (2018)’s Verb
Tenses System True/False and Tense transposition
exercises. While these systems can generate mul-
tiple exercises for a linguistic structure from the
same source document, the actual number of ex-
ercises is usually quite limited. By varying exer-
cise parameters such as the number of distractors,
hints in parentheses, or the span of the target con-
struction, variability can be increased. Notable ex-
amples making use of such parameterizations con-
stitute MIRTO which provides parameters for the
choice of target constructions, parentheses of FiB
exercises and support elements such as reference
pages (Antoniadis et al., 2004); the assistant sys-
tem Sakumon which requires users to manually
select target items and distractors from automat-
ically generated suggestions (Hoshino and Naka-
gawa, 2008); the Language Exercise App where
target constructions, distractors and parentheses
of FiB exercises are parameterizable (Pérez and
Cuadros, 2017); and FLAIR’s exercise generation
functionality which, in addition to providing pa-
rameters for target constructions, distractors and
parentheses, allows users to influence the speci-
ficity of the exercise instructions (Heck and Meur-
ers, 2022b). However, these systems require users

1http://sifnos.sfs.uni-tuebingen.de/FL
AIR/
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to specify each configuration individually so that
generating large numbers of parameterized exer-
cises involves considerable configuration effort as
well as manual labour to review the generated ex-
ercises for correctness.

Many exercise generation tools provide support
to post-edit the generated exercises, either within
the tool (e.g., Toole and Heift, 2001; Hoshino and
Nakagawa, 2008) or by providing an interface to
general-purpose authoring interfaces such as Hot
Potatoes2 or the LMS Moodle3 (e.g., Bick, 2000;
Aldabe et al., 2006; Pérez and Cuadros, 2017).
These interfaces are, however, designed to edit a
single exercise at a time. Modifications of ele-
ments which affect all exercises generated from
the same document thus have to be performed on
each exercise individually.

There is a clear gap to generate large num-
bers of exercises from a document with differ-
ent parameterizations as well as to allow for ef-
ficient editing of the generated exercises. We
build on Heck and Meurers (2022a)’s approach
to high-variability exercise generation by defining
abstract exercise specifications as an intermediate
step towards exercise generation. Our suggested
approach generates specifications for conditionals
and relative clauses automatically from authentic
texts and provides an authoring interface for the
specifications which allows to modify properties
of all exercises generated from the same specifica-
tion in a single step.

3 Implementation

As illustrated by the system architecture design
in Figure 1, the implementation consists of three
steps in-between which users are presented the in-
terim results and can modify them if they wish to
do so. This allows for maximally efficient user in-
teractions as they can be performed on the most
condensed representation layer containing the in-
formation to edit. The back-end code is imple-
mented in a microservice architecture which sup-
ports flexible use of programming languages, thus
facilitating the use of best-performing libraries
across multiple programming languages.

The front-end implementation is still in its pro-
totype state. It uses HTML, CSS and JavaScript,
relying on Ajax for communication with the
server.

2https://hotpot.uvic.ca
3https://moodle.org

Figure 1: System architecture

The information flow between the user and the front-end, and
between the front-end and the back-end is represented by ar-
rows. Dashed arrows indicate optional information flow.

3.1 Seed sentence selection

Figure 2: Seed sentence definition UI

Seed sentences, also referred to as carrier sen-
tences or candidate sentences in the literature, are
natural language sentences from which exercises
are generated (Pilán et al., 2017). In our im-
plementation, the selection of suitable sentences
starts in the web interface shown in Figure 2. It
supports three input sources: (1) the web, (2) the
BookCorpus4, and (3) custom texts. If users want

4The corpus based on an implementation by Kobayashi
(2018) is available at https://the-eye.eu/public
/AI/pile_preliminary_components/books1.t
ar.gz
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to search the BookCorpus for candidate sentences,
they need to specify the desired number of sen-
tences. Since the space of possible parameter com-
binations grows exponentially with the number of
parameters, the number of seed sentences to select
can only be specified globally and not for specific
parameter constellations. Crawling the Web in ad-
dition allows to search for sentences which appear
in a defined semantic context so that users also
need to specify a search term. Custom texts must
be inserted into the provided input field. They can
consist of manually compiled texts or any other
texts copied from arbitrary sources.

An additional parameter determines whether
some co-text is extracted along with the seed sen-
tences or only the seed sentences themselves. If
the co-text option is activated, the text in the same
paragraph, delimited by line breaks, will be ex-
tracted as well. For contextualized exercises, the
number of sentences cannot be specified. Instead,
the exercise will contain all occurrences of the tar-
geted linguistic structure in the paragraph as exer-
cise items.

A final set of configuration parameters allows
users to restrict the selection of seed sentences
which will later be turned into exercise items.
Available parameters depend on the targeted lin-
guistic structures. For conditionals, they include
the conditional type, the clause order, polarity,
aspect, and sentence form. For relative clauses,
the parameters consist of the relative pronoun,
whether the pronoun is compulsory or can be left
out, extraposition, and preposition stranding.

The seed sentence selection algorithm differs
from one input source to another. For web texts, a
google search is performed for the search term and
the content of the search results is processed until
the desired number of seed sentences has been ex-
tracted. For corpus texts, the documents of the cor-
pus are searched instead, again until the required
number of sentences has been identified. Custom
texts are processed in their entirety.

For Natural Language Processing (NLP), the
Java library Stanford CoreNLP5, as well as the
Python libraries NLTK6, SpaCy7 and Stanza8

were considered. Table 1 summarizes the re-
sults of the evaluation of their reliability with re-
spect to the annotations for seed sentence selection

5https://stanfordnlp.github.io/CoreNLP
6https://www.nltk.org
7https://spacy.io
8https://stanfordnlp.github.io/stanza

of conditionals and relative clauses. SpaCy and
Stanza yielded similarly good results, with SpaCy
performing considerably faster. Subsequent NLP
analyses were therefore implemented based on
SpaCy.

Precision Recall
RC C RC C

NLTK .89 .7 .7417 .9610
Stanza .98 .81 .8976 .9927
SpaCy .94 .86 .9039 .9902
Stanford CoreNLP .96 .76 .7606 .9683
Sample size 100 100 635 410

Table 1: Evaluation of NLP libraries

Precision was computed for a random sample of 100 sen-
tences from the BookCorpus. Recall values were determined
for a collection of manually compiled example sentences. All
metrics were determined for relative clauses (RC) and condi-
tionals (Cond).

The algorithm processes the texts of all input
sources in the same manner: A naive construction
identification rule based on dependency parses de-
termines whether a sentence could be a potential
candidate. For conditionals, it searches for ad-
verb clauses with some additional conditions such
as the existence of a token with value if and the
absence of a verb token contained in a manually
compiled list of reported speech markers9. For rel-
ative clauses, the algorithm searches for relative
clauses with a Wh-pronoun.

However, this rough filtering results in a consid-
erable amount of noise in the sentence candidates.
Pilán et al. (2017) identify a number of criteria for
good seed sentences, including well-formedness,
context independence, linguistic complexity and
additional structural and lexical criteria. While
we address most of the structural criteria, such
as negated or interrogative contexts, with the pa-
rameters exposed to users, we deliberately do not
restrict seed sentence selection based on lexical
criteria, which are often user-dependent and bet-
ter targeted by a macro-adaptive algorithm in the
target ILTS (Gooding and Tragut, 2022). Com-
pliance with context independence will be more
likely when the co-text option is activated and can
be addressed manually in the subsequent workflow
step. In order to account for well-formedness and

9Available lists (e.g. Tham and Nhi, 2021; Yilmaz and
Özdem Erturk, 2017) contain predominantly affirmative
markers. Since only question markers are relevant to con-
fusions with conditional clauses, we compiled a list based on
sampled evidence from the BookCorpus.
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linguistic complexity, we apply further processing
after the naive sentence selection: The algorithm
extracts all the information relevant to exercise
generation. This includes the exercise targets and
their properties as well as properties of the sen-
tences relevant to the configured parameters. The
algorithm rejects the sentence as soon as one piece
of information cannot be extracted or if it does not
comply with the configured parameters. This not
only ensures the highest possible success rate for
exercise generation in the succeeding step, but also
filters out most sentences which passed the naive
filter but do not actually contain the targeted lin-
guistic structure. In addition, we hypothesize that
the NLP tools’ inability to correctly process a sen-
tence would reflect a beginning student’s inability
to do so, thus also eliminating sentences too com-
plex for our target group.

The successfully parsed sentences are stored in
a result list. If so specified by the user, the co-
text of the paragraph is also stored in that list as
individual elements. For seed sentences targeting
conditionals, additional filtering is applied when
the user has restricted the selection of the condi-
tional type and selected both types. Since such
a configuration is usually used for exercises tar-
geting the distinction between conditional types,
the seed sentence selection ensures that both con-
ditional types occur in roughly equal numbers in
the result list. If the result list already contains
enough seed sentences for one conditional type,
any subsequently found occurrences of that type
will therefore be treated like sentences with no
conditional construction. Similarly, a subtopic for
relative clauses targets contact clauses for which
students need to learn when the pronoun can be
left out. It is therefore important to have seed
sentences both with optional and with compulsory
relative pronoun. If a user activates the selection
restriction for pronoun necessity and selects both
values, the algorithm therefore makes sure that
sentences with compulsory and optional pronoun
occur with similar frequency in the results.

Each element in the result list is tagged with its
type of either co-text or exercise item. The list is
used on the client to populate the user interface de-
signed to configure exercise specification parame-
ters.

Figure 3: Specification definition UI

3.2 Exercise specification generation

The user interface to specify parameters of ex-
ercise specifications, shown in Figure 3, initially
contains the exercise and co-text items extracted
by the seed sentence selector. They can be edited,
deleted, or their type changed from co-text to ex-
ercise item or vice versa. Additional items can
be added manually. The order of all items can be
changed through drag and drop mechanisms.

If no co-text items are specified, users can set
additional parameters which will lead to the cre-
ation of linguistic transformations of the seed sen-
tences. Transformations include for conditional
sentences the aspect, conditional type, polarity,
sentence form, and clause order. For relative
clauses, preposition stranding, extraposition, and
clause inversion are supported. The latter param-
eter transforms the original relative clause into a
main clause and the original main clause into a
relative clause, if possible. Whether a transforma-
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tion results in a separate exercise specification or
merely in an alternative sentence of the same spec-
ification depends on whether the target tokens, i.e.,
the pronoun of a relative clause or the verbs of
conditional sentences, are affected by the transfor-
mation. For example, negating the main clause of
the conditional sentence given in (1a) changes the
verb from (will go) to will not go in (1b), thus re-
quiring a new specification. Reversing the clause
order in (1a) to that in (1c) does not affect the
verb forms, therefore resulting in alternative sen-
tences of the same specification. All transforma-
tions which result in a separate specification also
offer the option to apply either of two realizations.
In this case, the algorithm randomly applies one of
the realizations of the transformation to each item
while at the same time making sure that each real-
ization is applied approximately the same number
of times. This allows to generate exercises which
practice a variety of linguistic phenomena.

(1) a. If he gets better, he will go to school.

b. If he gets better, he will not go to
school.

c. He will go to school if he gets better.

Based on these configurations, the algorithm
processes the texts declared as exercise items
while keeping the co-text elements unchanged.
Since it has been established in the previous step
that the processed sentences must contain an oc-
currence of the targeted language means, the al-
gorithm this time does not reject sentences which
cannot be fully processed. Instead, it uses default
values whenever a feature cannot be extracted. By
shifting the focus from precision for seed sentence
selection to recall for exercise specification gener-
ation, the same code can be used for both steps.

The extracted features are used to generate
abstract exercise specifications which support a
range of exercise types: Fill-in-the-Blanks, Sin-
gle Choice, Memory, Jumbled Sentences, Short
Answers, Mark-the-Words, and Categorization.
These specifications are in addition enriched with
exercise elements such as distractors for Single
Choice exercises or parentheses for Fill-in-the-
Blanks exercises. The distractor generation relies
on Natural Language Generation (NLG). Since
openly available Python libraries did not yield the
desired output, the Java-based SimpleNlg10 library

10http://github.com/simplenlg/simplenlg

is used to this purpose. The integration of this code
is facilitated by the microservice architecture.

The generated exercise specifications are sent to
the client where they are used to populate the ex-
ercise specification authoring interface.

3.3 Exercise generation

In order to finalize the specifications used for ex-
ercise generation, users can review them in the
web interface shown in Figure 4. The grouping
of multiple transformations into a single specifi-
cation allows to reduce revision effort to a mini-
mum. The transformations can be edited individu-
ally, deleted or added to. Each transformation can
be marked as exercise seed from which to actually
generate an exercise. If this option is not activated,
the transformation merely serves as accepted cor-
rect answer alternative (provided the exercise con-
text such as given prompts licenses the sentence).
In order to make sure that all resulting exercises
have an associated transformation for all items,
the sentences are linked per parameter constella-
tion across items. Deletion of one transformation
therefore also deletes the corresponding sentence
of all other items of the specification. Although
some transformations of the same seed sentence
require individual specifications, all specifications
associated with the same seed sentences are linked
by a common identifier. This enables adaptive sys-
tems using the generated exercises to avoid select-
ing similar activities in succession for the same
learner. In addition to reviewing the generated
exercise parameters such as target constructions,
chunking, distractors, and hints in parentheses, the
interface allows users to specify what exercises
should be generated. As can be seen in Figure 5,
this entails not only the exercise type, but also
more specific parameters such as the number of
distractors, whether to keep relative pronouns as
individual chunks or combine them with adjoin-
ing ones, whether to insert exercise targets in both
clauses or only one, or in which order to display
the clauses from which to form relative sentences
in the prompt. In addition, exercises can be gener-
ated for all linked items of a specification which
are associated with the same transformation, as
well as for a random choice of transformation of
each item.

Based on these specifications, subsequent exer-
cise generation is straightforward. All necessary
information is already contained in the specifica-
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Figure 4: Specification authoring UI

Figure 5: Exercise type definition UI

tions apart from instructions. These are stored
in the code for each exercise type and linguis-
tic structure. Apart from this, exercise generation
consists in converting the specifications into the
desired output format. Supported formats include
the standardized H5P file format and a proprietary

xml format for the in-house developed ILTS. The
generated files are returned to the client where they
can be downloaded by the user.

4 Evaluation

We evaluated precision and recall on candidate
sentence selection for corpus texts and for man-
ually compiled texts as well as the usability of the
generated exercise specifications.

4.1 Methodology

We searched the BookCorpus for 100 occurrences
of conditional sentences and relative sentences
each with the naive sentence selection algorithm.
The selection was not further restricted. We an-
notated them as true positives or false positives
and computed precision values. We then deter-
mined which of these sentences were rejected by
the sophisticated sentence selection algorithm and
computed recall and precision values for this al-
gorithm based on the data set obtained from the
naive sentence selection. For a collection of 100
manually composed sentences for each of the two
linguistic structures, we only applied the naive se-
lection since for this input type, the sophisticated
algorithm is bypassed. We computed recall values
for the algorithm’s acceptance of the input as seed
sentences.
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RC C Corpus
Recall (N) .91 1.0 M
Precision (N) .93 .89 BC
Recall (S) .3656 .7528 BC
Precision (S) .8947 .9306 BC

Table 2: Evaluation of the seed sentence selection

Recall and precision were calculated for the naive (N) and for
the sophisticated (S) algorithm. Precision (S) corresponds to
overall precision. Recall of the naive algorithm was calcu-
lated on manually compiled texts (M), the remaining metrics
on the BookCorpus (BC). For each metric, samples of 100
sentences were considered.

4.2 Results and Discussion

The results are summarized in Table 2: For
seed sentence selection from the corpus, relative
clauses obtain a precision of .93 on the naive se-
lection. The precision of the sophisticated selec-
tion, which is also the precision of the overall seed
sentence selection, is slightly lower at .8947. The
decrease in precision is due to the high rejection
rate, also resulting in a low recall of .3656, so that
the percentage of accepted incorrect findings in-
creases relative to the overall number of accepted
sentences. While this might suggest that the ad-
ditional filtering should be removed, the filtering
also serves as a pre-selection with regard to the en-
suing exercise generation from the specifications,
thus rejecting sentences early on which cannot be
processed successfully.

Results for conditionals are more in line with
the expected behaviour. Precision on the corpus
is already high (.89) for the naive sentence selec-
tion and increases further to .9306 with the so-
phisticated sentence selection. Recall of the so-
phisticated selection is also considerably higher
than for relative clauses (.7528). Of the 89 sen-
tences accepted as conditional sentences, 44 are
actually not stereotypical conditional sentences
taught in introductory language classes. They de-
viate in tense (e.g., Example 2a) or sentence struc-
tures such as using elliptical if-clauses (e.g., Ex-
ample 2b). This highlights the relevance of pa-
rameters to restrict the selection of seed sentences
which allows users to only select sentences with
textbook properties.

(2) a. If I can’t spoil my only daughter on her
birthday, I’m not much of a father, now
am I?

b. What if someone sees us?

Although the poor recall values indicate that
a considerable amount of potential exercise sen-
tences is lost in the process, this constitutes an ac-
cepted shortcoming when parsing large corpora.
Considering the trade-off between fast perfor-
mance and finding sentences lending themselves
well to exercise generation, we put a focus on the
latter criterion.

On the manually compiled sentences, the naive
algorithm achieves recall values of 1.0 and .92
for conditionals and relative clauses respectively.
Since each sentence of the data set contains a rel-
evant construction, all conditional sentences are
recognized by the algorithm while some relative
clauses are rejected. These constitute either ex-
traposed relative clauses such as example (3a) or
sentences with the pronoun whom as in (3b). The
issues can be traced back to incorrect parsing out-
puts obtained from the employed NLP tools.

(3) a. The kids screamed who are not from
our school.

b. My parents called my teacher whom I
saw today.

The number of exercises that can be generated
from each seed sentence depends on three fac-
tors: (1) the user selections for sentence transfor-
mations in the specification definition UI and for
exercise types in the specification authoring UI,
(2) the algorithm’s success in generating sentence
transformations, and (3) the grammar subtopic.

e = types ∗
item−
params∏

i=1

optionsi∗
alternatives−

params∏

i=1

optionsi

(4)
The maximum number of exercises breaks

down according to the formula given in Equa-
tion 4: The number of generated exercise specifi-
cation items constitutes the product of the options
per activated transformation parameter of those
parameters resulting in separate items. If all sen-
tence alternatives are turned into exercises, the
number of alternatives per exercise specification
item is also considered. It constitutes the product
of the options per activated transformation param-
eter of those parameters resulting in sentence al-
ternatives. If instead only one randomly selected
alternative is used per specification item, this num-
ber does not figure in the equation. The overall
number of exercises constitutes the product of the
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number of exercise types with the number of ex-
ercise specification items and, if applicable, the
number of sentence alternatives per item.

Csent Cdiff RCpron RCcont

types 34 21 16 3
items 81 81 3 3
nrand 2754 1701 48 9
alternatives 2 2 4 4
nall 5508 3402 192 36

Table 3: Maximum exercise counts

For random alternative selection (nrand), the maximum num-
ber of generated exercises depends on the available exercise
types and the number of specification items. If each alterna-
tive is turned into an exercise (nall), the number of alterna-
tives per exercise specification item is considered in addition.
Available exercise types differ between the subtopic differen-
tiating conditional types (Cdiff), the remaining subtopics on
conditionals (Csent), contact clauses (RCcont), and the remain-
ing subtopics (RCpron) on relative clauses.

Table 3 illustrates that applying this formula
to the subtopics conditional sentences, differentia-
tion of conditional types, relative clauses with rel-
ative pronouns, and contact clauses results in up
to more than 5500 exercises for a single seed sen-
tence.

5 Conclusion

We presented a fully implemented approach to
step-by-step generation of form-based grammar
exercises from authentic texts. We showed that
our approach applying the annotation algorithm in
the seed sentence selection step successfully elim-
inates false positives of more complex linguistic
constructions such as conditionals, and it reduces
issues for all language means in subsequent pro-
cessing steps. We also found evidence in our eval-
uation that allowing users to specify selection re-
strictions can be crucial for the usability of the tool
in classroom instruction to support the identifica-
tion of pedagogically suitable sentences.

Future work will improve the user interface both
in design and maintainability. The envisioned Re-
act11 implementation will make use of state-of-
the-art web technologies. We also plan to ex-
tend the implementation to additional language
means. The generated exercises will be tested in
the AI2Teach12 project extending the FeedBook
ILTS (Rudzewitz et al., 2017) successfully used in

11https://reactjs.org
12https://fit.uni-tuebingen.de/Project/

Details?id=7942

field studies in regular high schools in Germany
(Meurers et al., 2019). This will yield further in-
sights as to whether the authentic texts are suitably
complex and of appropriate content for the target
group.
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