ANN-Based Correlations for Excess Properties to Represent Density and Viscosity of Aqueous Monoethanol Amine (MEA) Mixtures.

Authors

  • Sumudu Karunarathne
  • Khim Chhantyal
  • Lars Øi

DOI:

https://doi.org/10.3384/ecp21185116

Keywords:

excess properties, ANN, density, viscosity

Abstract

The applicability of Artificial Neural Networks (ANNs) to represent excess properties is discussed. The excess molar volume VE and excess free energy of activation for viscous flow ΔGE* were calculated from measured density and viscosity at different monoethanol amine (MEA) concentrations and temperatures. Different ANNs with multiple inputs and a single hidden layer were trained, validated and tested to represent molar volumes VE and the excess free energy ΔGE*. Developed ANN models show good accuracies in data fitting by giving R2 as 0.99 and 0.98 for VE and ΔGE* respectively for the test data. The calculated average absolute relative deviation (AARD) for VE and ΔGE* are 1.5% and 1.2% respectively for the test data that give better predictions for the density and viscosity using a Redlich and Kister polynomial for the regression. The density and viscosity models based on ANN for VE and ΔGE* give high accuracies, which is an advantage of many aspects in engineering applications.

References

T. M. Aminabhavi, M. I. Aralaguppi, G. Bindu, and R. S. Khinnavar. Densities, shear viscosities, refractive indices, and speeds of sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the temperature interval 298.15-318.15 K, J. Chem. Eng. Data, 39: 522-528, 1994.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot. 2002. Transport Phenomena (John Wiley & Sons, Inc.: USA).

Ćwiklińska, and C. M. Kinart. Thermodynamic and physicochemical properties of binary mixtures of nitromethane with {2-methoxyethanol+2-butoxyethanol} systems at T=(293.15, 298.15, 303.15, 308.15, and 313.15)K, J. Chem. Thermodyn., 43: 420-429, 2011.

H. Eyring. Viscosity, Plasticity, and Diffusion as example of absolute reaction rates, J. Chem. Phys., 4: 283-291, 1936.

K. Fu, G. Chen, T. Sema, X. Zhang, Z. Liang, R. Idem, and P. Tontiwachwuthikul. Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA, Chem. Eng. Sci., 100: 195-202, 2013.

S. Garg, A. M. Shariff, M. S. Shaikh, B. Lal, A. Aftab, and N. Faiqa. A neural network approach to predict the density of aqueous MEA solution, Australian Journal of Basic and Applied Sciences, 9: 415-422, 2015.

M. E. Hamzehie, S. Mazinani, F. Davardoost, A. Mokhtare, H. Najibi, B. Van der Bruggen, and S. Darvishmanesh. Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions, Journal of Natural Gas Science and Engineering, 21: 19-25, 2014.

J. Han, J. Jin, D. A. Eimer, and M. C. Melaaen. Density of water (1) + Monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + Monoethanolamine (2) from (303.15 to 333.15) K, J. Chem. Eng. Data, 57: 1095-1103, 2012.

P. Haratipour, A. Baghban, A. H. Mohammadi, S. H. H. Nazhad, and A. Bahadori. On the estimation of viscosities and densities of CO2-loaded MDEA, MDEA+AMP, MDEA+DIPA, MDEA+MEA, and MDEA+DEA aqueous solutions, J. Mol. Liq., 242: 146-159, 2017.

A. Hartono, E. O. Mba, and H. F. Svendsen. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA), J. Chem. Eng. Data 59: 1808-1816, 2014.

S. S. Karunarathne, K. Chhantyal, D. A. Eimer, and L. E. Øi. Artificial neural networks (ANNs) for density and viscosity predictions of CO2 loaded alkanolamine + H2O mixtures, ChemEngineering, 2020.

S. S. Karunarathne, D. A. Eimer, and L. E. Øi. Density, viscosity and free energy of activation for viscous flow of monoethanol amine (1) + H2O (2) + CO2 (3) mixtures, Fluids, 5,13, 2020.

C. M. Kinart, W. J. Kinart, and A. Ćwiklińska. 2-Methoxyethanol–Tetrahydrofuran–binary liquid system. Viscosities, densities, excess molar volumes and excess Gibbs activation energies of viscous flow at various temperatures, J. Therm. Anal. Calorim., 68: 307-317, 2002.

T. M. Letcher, and R. C. Baxter. Application of the Prigogine-Flory-Patterson theory part I. Mixtures ofn-alkanes with bicyclic compounds, benzene, cyclohexane andn-hexane, J. Solution Chem., 18: 65-80, 1989.

A. R. Mahajan, and S. R. Mirgane. Excess molar volumes and viscosities for the binary mixtures of n-Octane, n-Decane, n-Dodecane, and n-Tetradecane with Octan-2-ol at 298.15 K, Journal of Thermodynamics, 2013: 1-11, 2013.

R. Meyer, M. Meyer, J. Metzger, and A. Peneloux. Thermodynamic and physicochemical properties of binary solvent Journal de Chimie Physique et de Physico-Chimie Biologique, 68: 406-412, 1971.

F. Pouryousefi, R. Idem, T. Supap, and P. Tontiwachwuthikul. Artificial Neural Networks for Accurate Prediction of Physical Properties of Aqueous Quaternary Systems of Carbon Dioxide (CO2)-Loaded 4-(Diethylamino)-2-butanol and Methyldiethanolamine Blended with Monoethanolamine, Ind. Eng. Chem. Res., 55: 11614-11621, 2016.

F. Qi, and H. Wang. Application of Prigogine–Flory–Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone, J. Chem. Thermodyn., 41: 265-272, 2009.

O. Redlich, and A. T. Kister. Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 40: 345-348, 1948.

C. I. Rocabruno-Valdés, L. F. Ramírez-Verduzco, and J. A. Hernández. Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel, Fuel, 147: 9-17, 2015.

N. Sipöcz, F. A. Tobiesen, and M. Assadi. The use of Artificial Neural Network models for CO2 capture plants, Appl. Energy, 88: 2368-2376, 2011.

R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends, J. Chem. Eng. Data, 43: 378-382, 1998.

Downloads

Published

2022-03-31