Modeling and Simulation for Decision making in Sustainable and Resilient Assembly System Selection

Authors

  • Juhani Heilala

DOI:

https://doi.org/10.3384/ecp21185180

Keywords:

resilient assembly systems, sustainability, modeling and simulation, decision support

Abstract

Resiliency requires manufacturing system adaptability to internal and external changes, such as quick responses to customer needs, supply chain disruptions, and markets changes, while still controlling costs and quality. Sustainability requires simultaneous consideration of the economic, environmental, and social implications associated with the production and delivery of goods. Due to increasing complexity, the engineering of a production system is a knowledge-intensive process. In this paper, a summary of system adaptation methods are shown, and a holistic methodology for the assembly equipment and system modeling and evaluation is explained. The aim here is to bring resiliency and sustainability considerations into the early decision-making process. The methodology is based on estimations on system performance, using discrete event simulation run results, or other process modeling methods, and the use of Key Performance Indicators (KPI), such as Overall Equipment Efficiency (OEE), connected to cost parameters and environmental aspects analysis. Overall, it is a tool developed through multiple projects for design specification reviews and improvements, trade-off analysis, and investments justification.

References

ASTM E3012-20, Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes, ASTM International, West Conshohocken, PA, USA. 2020. doi:10.1520/E3012-20

E. Barkmeyer, N. Christopher, S. Feng, J. Fowler, S. Frechette, A. Jones, K. Jurrens, C. McLean, M. Pratt, H. Scott, M. Senehi, R. Sriram and E. Wallace. SIMA Reference Architecture Part I: Activity Models, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, USA, 1996. doi:10.6028/NIST.IR.5939

M. Beltrami, G. Orzes, J. Sarkis, and M. Sartor. Industry 4.0 and sustainability: Towards conceptualization and theory. Journal of Cleaner Production, Volume 312, 2021, 127733, ISSN 0959-6526, 2021. doi:10.1016/j.jclepro.2021.127733.

M. Brundage, W. Bernstein, T. Kliks, H. Nishi, S. Hoffenson, Q. Chang and K. Morris. Analyzing environmental sustainability methods for use earlier in the product lifecycle. Journal of Cleaner Production, 187, 877-892, 2018. doi:10.1016/j.jclepro.2018.03.187

L. De Nul, M. Breque and A. Petridis. Industry 5.0. Towards a sustainable, human-centric and resilient European industry. European Commission, 2021. doi:10.2777/308407

M. Dotoli, A. Fay, M. Miśkowicz and C. Seatzu. An overview of current technologies and emerging trends in factory automation. International Journal of Production Research, 57:15-16, 5047-5067, 2019. doi:10.1080/00207543.2018.1510558

R. Dove. What Is All This Talk About Agility - The 21st Century Manufacturing Enterprise Strategy, Japan Management Association Research, Prevision, 1992.

EPA (2007). The Lean and Environment Toolkit. U.S. Environmental Protection Agency. https://www.epa.gov/sustainability/lean-environment-toolkit [Accessed July 1 2021].

European Commission LCI. (2018). ELCD 3. Life Cycle Inventory (LCI) data sets. Available via https://eplca.jrc.ec.europa.eu/ELCD3/ [Accessed June 17, 2021].

GRI (2020). Global Reporting Initiative standards. https://www.globalreporting.org/standards. [Accessed 1 July 2021].

J. Heilala and J. Montonen. Simulation-based design of modular assembly system - use of simulation module library. In Proceedings of 3rd EUROSIM Congress on Modelling and Simulation, April 14-15, 1998. Helsinki, Finland, pages 493-498. ARGESIM Report 9, 1998. ISBN 978-3-901608-03-2.

J. Heilala and P. Voho. Modular reconfigurable flexible final assembly systems. Assembly Automation, Vol. 21 No. 1, pp. 20-30, 2001. doi:10.1108/01445150110381646

J. Heilala, O. Väätäinen, J. Montonen, T. Laaksonen and H. Kulmala. Decision Support and Simulation Methods For Assembly System Sales Engineers. In Proceedings of the 6th EUROSIM Congress, Ljubljana, Slovenia. 9-13 Sept. 2007. ARGESIM, 2007. ISBN 978-3-901608-32-2.

J. Heilala, J. Montonen and O. Väätäinen. Life cycle and unit-cost analysis for modular reconfigurable flexible light assembly systems. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. Professional Engineering Publishing Ltd., Vol. 222, (2008) pages 1289 – 1299. 2008a doi:10.1243/09544054JEM1034

J. Heilala, S. Vatanen, J. Montonen, H. Tonteri, B. Johansson, J. Stahre and S. Lind. Simulation-Based Sustainable Manufacturing System Design. In Proceedings of the 2008 Winter Simulation Conference. pages 1922-1930. 2008b doi:10.1109/WSC.2008.4736284

P.T. Kidd. Agile Manufacturing, Forming New Frontiers, Addison-Wesley Publishing Company Inc., 1994. ISBN 0-201-63163-6.

A. Kusiak. Fundamentals of smart manufacturing: A multithread perspective. IFAC Annual Reviews in Control, 47, 214–220. 2019. doi:10.1016/j.arcontrol.2019.02.001

A. Kusiak. Resilient manufacturing. Journal of Intelligent Manufacturing. 2020, 31, 269. 2020. doi:10.1007/s10845-019-01523-7

S. Lind, B. Johansson, J. Stahre, C. Berlin, Å. Fasth, J. Heilala, K. Helin, S. Kiviranta, B. Krassi, J. Montonen, H. Tonteri, S. Vatanen and J. Viitaniemi, J. SIMTER - A Joint Simulation Tool for Production Development. Espoo, VTT. 49 p. VTT Working Papers; 125. 2009. ISBN 978-951-38-7185-7

M.M. Mabkhot, A.M. Al-Ahmari, B. Salah and H. Alkhalefah. Requirements of the Smart Factory System: A Survey and Perspective. Machines 2018, 6, 23, 2018. doi:10.3390/machines6020023

M. Mani, J. Larborn, B. Johansson, K.W. Lyons and K.C. Morris. Standard Representations for Sustainability Characterization of Industrial Processes. ASME. Journal of Manufacturing Science and Engineering. October 2016; 138(10): 101008. 2016. doi:10.1115/1.4033922

D. Mourtzis, N. Papakostas, D. Mavrikios, S. Makris and K. Alexopoulos. The role of simulation in digital manufacturing: Applications and outlook. International Journal of Computer Integrated Manufacturing 2018, 28, 3–24 doi:10.1080/0951192X.2013.800234

D. Mourtzis, J. Angelopoulos and N. Panopoulos. Robust Engineering for the Design of Resilient Manufacturing Systems. Applied Sciences. 2021, 11, 3067. doi:10.3390/app11073067

M. Paju, J. Heilala, M. Hentula, A. Heikkilä, B. Johansson, S. Leong and K. Lyons. Framework and indicators for a sustainable manufacturing mapping methodology. In Proceedings of the 2010 Winter Simulation Conference, pages 3411–3422, 2010. doi:10.1109/WSC.2010.5679031

H. Panetto, B. Iung, D. Ivanov, G. Weichhart and X. Wang. Challenges for the cyber-physical manufacturing enterprises of the future. Annual Reviews in Control, Volume 47, 2019, pages 200-213, ISSN 1367-5788, doi:10.1016/j.arcontrol.2019.02.002.

SEMI Standard E35 - Guide to Calculate Cost of Ownership (COO) Metrics for Semiconductor Manufacturing Equipment. [available online at www.semi.org].

SEMI Standard E10 - Specification for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM) and Utilization [available online at www.semi.org].

SEMI Standard E79 - Specification for Definition and Measurement of Equipment Productivity [available online at www.semi.org].

J. Sääski, T. Salonen, J. Heilala and J. Mela, J. Economic evaluation of the use of augmented reality in assembly processes. In Proceedings of Swedish Production Symposium, Stockholm 18-20 November 2008. Lindberg B., and Stahre J. (eds.). The Swedish Production Academy, pages 409-416. 2008.

Visual Components https://www.visualcomponents.com/ [Accessed August 1 2021].

World Commission on Environment and Development (1987). Our Common Future. Oxford, Great Britain: Oxford University Press. 1987.

Downloads

Published

2022-03-31