Automated Cost Optimization of CO2 Capture Using Aspen HYSYS

Authors

  • Lars Erik Øi
  • Andrea Haukås
  • Solomon Aromada
  • Nils Eldrup

DOI:

https://doi.org/10.3384/ecp21185293

Keywords:

carbon capture, Aspen HYSYS, simulation, cost estimation, optimization

Abstract

CO2 can be captured by absorption into monoethanol amine (MEA) followed by desorption. In this work, three configurations; standard, vapour recompression and a simple split-stream (rich split) have been simulated with an equilibrium-based model in Aspen HYSYSTM V10.0 using flue gas data from a natural gas based power plant. Adjust and recycle blocks available in Aspen HYSYS are used to automate the energy and material balance for a specified configuration. Optimization can be performed by minimizing the total cost calculated in an Aspen HYSYS spreadsheet. The equipment cost was obtained from Aspen In-plant Cost EstimatorTM V10.0, and an enhanced detailed factor (EDF) method was used to estimate the total investment cost. Parametric studies of absorber packing height, minimum approach temperature in the main heat exchanger, flash pressure and split ratio were performed at 85% capture efficiency for the three configurations. The calculated cost optimum process parameters for the standard process were 15 m packing height and 13 °C minimum approach temperature. For the vapor recompression case, a flash pressure of 150 kPa provided the lowest total cost. The calculated optimum rich split ratio was 12%. Automated calculations are dependent on stable convergence of the simulations. A specific challenge is the adjustment of the amine recirculation to obtain a specified total capture rate.

References

H. Ali. Techno-economic analysis of CO2 capture concepts. PhD Thesis, University of South-Eastern Norway, 2019.

S. A. Aromada and L. E. Øi. Simulation of Improved Absorption Configurations for CO2 Capture. In Linköping Electronic Conference Proceedings, SIMS 56, pp. 21-29, 2015. doi:http://dx.doi.org/10.3384/ecp1511921

S. A. Aromoda and L. E. Øi. Energy and Economic Analysis of Improved Absorption Configurations for CO2 Capture. Energy Procedia, 114:1342-1351, 2017.

S. A. Aromada, N. H. Eldrup, F. Normann and L. E. Øi. Simulation and Cost Optimization of different Heat Exchangers for CO2 Capture. In Linköping Electronic Conference Proceedings, SIMS 61, pp. 22-24, 2020. doi:10.3384/ecp20176318

A. Cousins, L. T. Wardhaugh, and P. H. M. Feron, Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Chemical Engineering Research and Design, 89(8):1237-1251, 2011.

A. Cousins, L. T. Wardhaugh, and P. H. M. Feron. A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. International Journal of Greenhouse Gas Control, 5(4):605-619, 2011.

L. Dubois and D. Thomas. Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. International Journal of Greenhouse Gas Control, 69:20-35, 2017.

N. H. Eldrup. Installation factor sheet - Project Management and Cost Engineering. Master's Course. University College of South-Eastern Norway, Porsgrunn, 2016.

E. S. Fernandez, E. J. Bergsma, F. M. Mercader, and E. L. V. Goetheer. Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: Net present value maximisation, International Journal of Greenhouse Gas Control, 11:114-121, 2012.

G. P. S. A. (GPSA), Engineering Data Book, 10. ed., Tulsa, Oklahoma: Gas Processing Suppliers Association, 1987.

A. L. Haukås, J. Helvig, I. Hæstad and A. M. Lande. Automatization of Process Simulation and Cost Estimation of CO2 capture in Aspen HYSYS. Master’s Project, University of South-Eastern Norway, 2019.

A. L. Haukås. Process simulation and cost optimization of CO2 capture Using Aspen HYSYS. Master’s Thesis, University of South-Eastern Norway, Porsgrunn, 2020.

J. Holoboff. Improving flowsheet convergence in HYSYS. Available online (30.11.2019): http://processecology.com/articles/improving-flowsheet-convergence-in-hysys

Y. Ishii and F. D. Otto. Novel and fundamental strategies for equation-oriented process plowsheeting Part I: A basic algorithm for inter-linked, multicolumn separation processes. Computers and Chemical Engineering, 32:1842-1860, 2008.

O. B. Kallevik. Cost estimation of CO2 removal in HYSYS. Master’s Thesis, Telemark University College, Porsgrunn, 2010.

M. Karimi, M. Hillestad, and H. F. Svendsen. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chemical Engineering Research and Design, 89(8):1229-1236, 2011.

T. P. Kisala, R. A. Trevino-Lozano, J.F. Boston and H. I. Britt. Sequential modular and simultaneous modular strategies for process flowsheet optimization. Computers and Chemical Engineering, 11(6):567-579, 1987.

Y. Le Moullec, T. Neverux, A. Chikukwva and A. Hoff. Process modifications for solvent-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 31:96-112, 2011.

K. Park and L. E. Øi. Optimization of gas velocity and pressure drop in CO2 absorption column. In Linköping Electronic Conference Proceedings SIMS 58, pp. 292-297, 2017. doi: 10.3384/ecp17138292

S. Sharma and G.P. Rangaiah. Mathematical Modeling, Simulation and Optimization for Process Design. Chemical Process Retrofitting and Revamping, Techniques for Retrofitting and Revamping, G. P. Rangaiah, Ed., 1. ed. ProQuest Ebook Central: John Wiley & Sons, Incorporated, 2016, pp. 97-127, 2016.

M. Souders and G. G. Brown. Design of Fractionating Columns I. Entrainment and Capacity. Industrial & Engineering Chemistry, 26:98-103, 1934.

L. E. Øi. Removal of CO2 from exhaust gas. PhD Thesis, Telemark University College, Porsgrunn, 2012.

L. E. Øi, T. Bråthen, C. Berg, S. K. Brekne, M. Flatin, R. Johnsen, I. G. Moen and E. Thomassen. Optimization of Configurations for Amine based CO2 Absorption Using Aspen HYSYS. Energy Procedia, 51: 224-233, 2014.

L. E. Øi, E. Sundbø, and H. Ali. Simulation and Economic Optimization of Vapor Recompression Configuration for Partial CO2 capture. In the 58th Conference on Simulation and Modelling, SIMS 58, Reykjavik, Iceland, September 25th – 27th, 2017.

L. E. Øi, N. Eldrup, S. Aromada, A. Haukås, J. Helvig, I. Hæstad and A.M. Lande. Process Simulation and Cost Estimation of CO2 Capture using Aspen HYSYS. In Linköping Electronic Conference Proceedings, SIMS 61, pp. 326-331, 2020. doi:10.3384/ecp20176326

Downloads

Published

2022-03-31