Simulation and Impact of different Optimization Parameters on CO2 Capture Cost

Authors

  • Solomon Aforkoghene Aromada
  • Sumudu Karunarathne
  • Nils Henrik Eldrup
  • Sina Orangi
  • Farzan Farsi Madan
  • Katarzyna Grazyna Fajferek
  • Njål Torgeir Sæter
  • Syaiful Bahri
  • Lars Erik Øi

DOI:

https://doi.org/10.3384/ecp21185309

Keywords:

simulation, CO2, optimization, techno-economic analysis, Aspen HYSYS

Abstract

The influence of different process parameters/factors on CO2 capture cost, in a standard amine based CO2 capture process was studied through process simulation and cost estimation. The most influential factor was found to be the CO2 capture efficiency. This led to investigation of routes for capturing more than 85% of CO2. The routes are by merely increasing the solvent flow or by increasing the absorber packing height. The cost-efficient route was found to be by increasing the packing height of the absorber. This resulted in 20% less cost compared to capturing 90% CO2 by increasing only the solvent flow. The cost optimum absorber packing height was 12 m (12 stages). The cost optimum temperature difference in the lean/rich heat exchanger was 5 °C. A case with a combination of the two cost optimum parameters achieved a 4% decrease in capture cost compared to the base case. The results highlight the significance of performing cost optimization of CO2 capture processes.

References

H. Ali, N.H. Eldrup, F. Normann, R. Skagestad, and L. E. Øi. Cost Estimation of CO2 Absorption Plants for CO2 Mitigation–Method and Assumptions. International Journal of Greenhouse Gas Control, 88, 10-23, 2019. doi: 10.1016/j.ijggc.2019.05.028.

S. A. Aromada, N. H. Eldrup and L. E. Øi. Capital Cost Estimation of CO2 Capture Plant using Enhanced Detailed Factor (EDF) Method: Installation Factors and Plant Construction Characteristic Factors. International Journal of Greenhouse Gas Control, 1 10, 103394, 2021.

S. A. Aromada, N. H. Eldrup, F. Normann and L. E. Øi. Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture. Energies, 13(23), 6315, 2020b. https://doi.org/10.3390/en13236315

S. A. Aromada and L. E. Øi. Simulation of Improved Absorption Configurations for CO2 Capture. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping Electronic Conference Proceedings, 119(2), 21-29, 2015. http://dx.doi.org/10.3384/ecp1511921

S. A. Aromada and L. E. Øi. Energy and Economic Analysis of Improved Absorption Configurations for CO2 Capture. Energy Procedia, 114: 1342-1351, 2017. doi: 10.1016/j.egypro.2017.03.1900

S. A. Aromada, N. H. Eldrup, F. Normann and L. E. Øi. Simulation and Cost Optimization of different Heat Exchangers for CO2 Capture. Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, September 22-24, Virtual Conference, Finland. Linköping Electronic Conference Proceedings, 176(45), 318-325, 2020a. https://doi.org/10.3384/ecp20176318

L. Brickett. Carbon Dioxide Capture Handbook. National Energy Technology Laboratory. 2015. Available on: www.netl.doe.gov (Accessed on 10.11.2020)

Y. Hu, Y. Gao, Y., H. Lv, G. Xu, S. Dong. A new integration system for natural gas combined cycle power plants with CO2 capture and heat supply. Energies, 11(11), 3055, 2018.

IEAGHG. Deployment of CCS in the cement industry. Cheltenham, UK. 2013.

IEAGHG R&D Programme, 2008. CO2 capture in the cement industry. Cheltenham, UK. 2008/3.

O. B. Kallevik. Cost estimation of CO2 removal in HYSYS. Master's thesis. Høgskolen i Telemark, 2010.

M. Karimi, M. Hillestad, and H. F. Svendsen. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chemical Engineering Research and Design, 89(8), 1229–1236, 2011.

K. Li, W. Leigh, P. Feron, H. Yu and M. Tade. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 165, 648-659, 2016.

C. Nwaoha, M. Beaulieu, P. Tontiwachwuthikul, M. D. Gibson, M. D. Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend. International Journal of Greenhouse Gas Control, 78, 400-412, 2018.

S. Orangi, F. F. Madan, K. G. Fajferek, N. T. Sæter, S. Bahri. Process simulation and cost estimation of CO2 capture in Aspen HYSYS using different estimation methods. Master’s Group Project Report, University of South-Eastern Norway, Porsgrunn. 2020.

M. O. Schach, R. Schneider, H. Schramm and J. U. Repke, J. U. Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas. Industrial & Engineering Chemistry Research, 49(5), 2363-2370, 2010.

T. E. Thorsen. Therefore, this is a big day for Grenland-LEADER: The government’s “yes” to the capture and storage of CO₂ in Brevik is big. Varden. 2020, September 21. Available online: https://www.varden.no/meninger/derfor-erdette-en-stor-dag-for-grenland/ (Accessed: 03.04.2021).

L.E. Øi, N. Eldrup, S. Aromada, A. Haukås, J. HelvigIda Hæstad, & A. M. Lande. Process Simulation, Cost Estimation and Optimization of CO2 Capture using Aspen HYSYS. In Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, September 22-24, Virtual Conference, Finland. Linköping Electronic Conference Proceedings 176:46, 326-331, 2020. https://doi.org/10.3384/ecp20176326

L. E. Øi, T. Bråthen, C. Berg, S. K. Brekne, M. Flatin, R., Johnsen, I. G. Moen, & E. Thomassen. Optimization of configurations for amine based CO2 absorption using Aspen HYSYS. Energy Procedia, 51:224-233, 2014. doi:10.1016/j.egypro.2014.07.026.

L. E. Øi. Removal of CO2 from Exhaust Gas. Ph.D. Thesis, Department of Process, Energy and Environmental Technology, Telemark University College, Porsgrunn, Norway, 2012.

L. E. Øi. Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant. In The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg. Linköping Electronic Conference Proceedings 27 (8), 73-81, 2007. http://www.ep.liu.se/ecp_article/index.en.aspx?issue=027;article=008

Downloads

Published

2022-03-31