Simulation and Economic Analysis of MEA+PZ and MDEA+MEA Blends in Post-combustion CO2 Capture Plant


  • Sina Orangi
  • Solomon Aforkoghene Aromada
  • Neda Razi
  • Lars Erik Øi



CO2 capture, simulation, energy-optimal, cost estimation, solvent, blend, regeneration energy, economy


The energy requirement of the amine based CO2 capture process is the main drawback of the technology. Studies on energy demand reduction are therefore important. This work presents energy optimization and economic analysis of an 85% CO2 capture process using pure monoethanolamine (MEA), and processes with blends of methyl diethanolamine (MDEA) and piperazine (PZ). The process with 30 wt% MEA was the base (reference) case in this study. The regeneration energy requirement for the base case was 3.77 GJ/tCO2. The blends of (30 wt% MEA+5 wt% PZ) and (30 wt% MEA+15 wt% MDEA) were calculated to achieve 4.9% and 7.5% reduction in regeneration energy respectively. The economic analysis also indicated that 4.1% and 4.3% total annual cost savings can be achieved by the MEA+PZ and MEA+MDEA blends processes respectively. The work further shows that the cyclic capacity is enhanced by using these blends instead of pure MEA.


A. A. Abd, S. Z. Naji. Comparison study of activators performance for MDEA solution of acid gases capturing from natural gas: Simulation-based on a real plant. Environmental Technology & Innovation, 17, 100562, 2020.

M. R. Abu-Zahra, L. H. Schneiders, LJ. P. Niederer, P. H. Feron, G. F. Versteeg. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse gas control, 1(1), 37-46, 2007.

H. Ali, N. H. Eldrup, F. Normann, R. Skagestad, R., L. E. Øi. Cost Estimation of CO2 Absorption Plants for CO2 Mitigation–Method and Assumptions. International Journal of Greenhouse Gas Control, 88, 10-23, 2019.

S. A. Aromada, N. H. Eldrup, F. Normann, L. E. Øi. Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture. Energies, 13(23), 6315, 2020.

S. A. Aromada, N. H. Eldrup, L. E. Øi. Capital cost estimation of CO2 capture plant using Enhanced Detailed Factor (EDF) method: Installation factors and plant construction characteristic factors. International Journal of Greenhouse Gas Control, 110, 103394, 2021.

S. A. Aromada, L. E. Øi. Simulation of improved absorption configurations for CO2 capture. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 119, 21-29, 2015, November. Doi: 10.3384/ecp1511921.

T. N. Borhani, M. Wang. Role of solvents in CO2 capture processes: The review of selection and design methods. Renewable and Sustainable Energy Reviews, 114, 109299, 2019.

Chemical Enginnering Essentials for the CPi Professional . 2021. Available online: Accessed: 08.02.2021.

A. Cousins, L. T. Wardhaugh, P. H. M. Feron. A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. International Journal of Greenhouse Gas Control, 5(4), 605-619, 2011. doi:

L. Dubois, D. Thomas. Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. International Journal of Greenhouse Gas Control, 69, 20-35, 2018.

J. Gomes, S. Santos, J. Bordado. Choosing amine-based absorbents for CO2 capture. Environmental technology, 36(1), 19-25, 2015.

S. M. Hosseini-Ardali, M. Hazrati-Kalbibaki, M. Fattahi, F. Lezsovits. Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy, 211, 119035, 2020.

R. M. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A Veawab, A. Aroonwilas, D. Gelowitz, D. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Industrial & engineering chemistry research, 45(8), 2414-2420, 2006.

B. A. Khan, A. Ullah, M. W. Saleem, A. N. Khan, M. Faiq, M. Haris. Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process. Sustainability, 12(20), 8524, 2020.

A. S. Lee, J. C. Eslick, D. C. Miller, J. R. Kitchin. Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach. International Journal of Greenhouse Gas Control, 18, 68-74, 2013.

X. Li, S. Wang, C. Chen. Experimental study of energy requirement of CO2 desorption from rich solvent. Energy Procedia, 37, 1836-1843, 2013.

S. Mudhasakul, H. M. Ku, P. L. Douglas. A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. International Journal of Greenhouse Gas Control, 15, 134-141, 2013.

C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul, M. J. AL-Marri, A. Benamor. Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. Petroleum, 3(1), 10-36, 2017.

G. T. Rochelle, Y. Wu, E Chen, K. Akinpelumi, K. B. Fischer, T. Gao, T, C. T. Liu, J. L. Selinger, J. L. Pilot plant demonstration of piperazine with the advanced flash stripper. International Journal of Greenhouse Gas Control, 84, 72-81, 2019.

G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q Xu, A. Voice. Aqueous piperazine as the new standard for CO2 capture technology. Chemical engineering journal, 171(3), 725-733, 2011.

R. Zhang, X. Zhang, Q. Yang, H. Yu, Z. Liang, Z., X. Luo. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied Energy, 205, 1002-1011, 2017.

L. E. Øi. CO2 removal by absorption: challenges in modelling. Mathematical and Computer Modelling of Dynamical Systems, 16(6), 511-533, 2010.

L. E. Øi, E. Sundbø, H. Ali. Simulation and economic optimization of vapour recompression configuration for partial CO2 capture. Linköping Electronic Conference Proceedings, 298-303, 2017. Doi:10.3384/ecp171382982017.