Sensitivity and Uncertainty Analysis in a Circulating Fluidized Bed Reactor Modeling


  • Zahir Barahmand
  • Chameera Jayarathna
  • Chandana Ratnayake



fuzzy set theory, Sensitivity analysis, uncertainty analysis, circulating fluidized bed reactor, CPFD simulation


As in many real applications, in the world of fine powders and small particles, there are uncertainties and vagueness in the parameters such as particle size, sphericity, initial solid void fraction, envelope density, etc. In some cases, there are different methods to measure a parameter, such as a particle size that depends on the method (based on length, weight, and volume); the measured values may be significantly different from each other. Therefore, there is no crisp or exactly known parameter in many cases because of the fine powders' inherent uncertain nature. On the other hand, being characteristic of the dynamic systems, physical parameters such as temperature and pressure fluctuate but can be kept in an acceptable range, affecting the main design parameters such as fluid density and dynamic viscosity. The most traditional tools and methods for simulating, modeling, and reasoning are crisp, deterministic, and precise, but these values are estimated or changing (randomly or stochastically). Several approaches can describe this phenomenon. Moreover, when it comes to uncertainties, mathematical tools are probably the best solutions. With the fuzzy set theory method, linguistic variables or ranges can be converted to mathematical expressions, and consequently, instead of crisp values, these can be applied to the equations. The uncertainty analysis can be more important when the model is susceptible to one parameter. A preliminary sensitivity analysis on a fluidized bed application has shown that the solid void fraction has the highest, and the fluid density has the lowest sensitivity to its operation. The theoretical approach has been validated by CPFD simulation using Barracuda v20.1.0.


V. Abedi, R. Hontecillas, A. Carbo, C. Philipson, S. Hoops, and J. Bassaganya-Riera. Chapter 8 - Multiscale Modeling: Concepts, Technologies, and Use Cases in Immunology. In J. Bassaganya-Riera (Ed.), Computational Immunology pages 145–173. Academic Press, 2016. doi:10.1016/B978-0-12-803697-6.00008-4

B. Afework, J. Hanania, K. Stenhouse, and J. Donev. Cyclone separator—Energy Education, 2018.

M. Aien, A. Hajebrahimi, and M. Fotuhi-Firuzabad. A comprehensive review on uncertainty modeling techniques in power system studies. Renewable and Sustainable Energy Reviews, 57, 1077–1089, 2016. doi:10.1016/j.rser.2015.12.070

M. Aien, M. Rashidinejad, and M. Fotuhi-Firuzabad. On possibilistic and probabilistic uncertainty assessment of power flow problem: A review and a new approach. Renewable and Sustainable Energy Reviews, 37, 883–895, 2014. doi:10.1016/j.rser.2014.05.063

S. S. Appadoo. Pricing financial derivatives with fuzzy algebraic models: A theoretical and computational approach, Ph.D. thesis, University of Manitoba, 2006.

Z. Barahmand, C. Jayarathna, and C. Ratnayake. CPFD simulations on a chlorination fluidized bed reactor for aluminum production: An optimization study. In Proceedings - 1st SIMS EUROSIM Conference on Modelling and Simulation, Finland, 2021a.

Z. Barahmand, C. Jayarathna, and C. Ratnayake. The effect of alumina impurities on chlorination in a fluidized bed reactor: A CPFD study. In Proceedings - 1st SIMS EUROSIM Conference on Modelling and Simulation, Finland, 2021b.

P. Basu. Circulating Fluidized Bed Boilers: Design, Operation and Maintenance. Springer International Publishing, 2015. doi:10.1007/978-3-319-06173-3

Y. Ben-Haim. Information Gap Decision Theory: Decisions under Severe Uncertainty (1st edition). Academic Press, 2001.

C. Carlsson and R. Fullér. On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315–326, 2001. doi:10.1016/S0165-0114(00)00043-9

C. D. Cooper and F. C. Alley. Air Pollution Control: A Design Approach, Fourth Edition. Waveland Press, 2010.

G. B. Dantzig. Linear Programming under Uncertainty. Management Science, 1(3–4), 197–206, 1955. doi: 10.1287/mnsc.1.3-4.197

D. Dubois and H. Prade. Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30(3), 183–224, 1983. doi:10.1016/0020-0255(83)90025-7

V. Fragoulakis, C. Mitropoulou, M. S. Williams, & G. P. Patrinos. Chapter 5—Advanced Methodological Aspects in the Economic Evaluation. In V. Fragoulakis, C.

Mitropoulou, M. S. Williams, & G. P. Patrinos (Eds.), Economic Evaluation in Genomic Medicine (pp. 65–96). Academic Press, 2015. doi:10.1016/B978-0-12-801497-4.00005-9

R. Fullér and P. Majlender. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and Systems,136, 363–374, 2003. doi:10.1016/S0165-0114(02)00216-6

R. Goetschel and W. Voxman. Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1), 31–43, 1986. doi:10.1016/0165-0114(86)90026-6

R. Herzallah. Incertainty in control problems: A survey. IFAC Proceedings Volumes, 38(1), 82–90, 2005.

N. N. Karnikand J. M. Mendel. Centroid of a type-2 fuzzy set. Information Sciences, 132(1), 195–220, 2001.,doi:10.1016/S0020-0255(01)00069-X

D. Kunii and O. Levenspiel. Fluidization Engineering. Butterworth-Heinemann, 1991.

R. E. Moore, R.B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis (1st edition). Society for Industrial and Applied Mathematics, 2009.

C. Pichery. Sensitivity Analysis. In P. Wexler (Ed.), Encyclopedia of Toxicology (third edition), pages 236–237. Academic Press, 2014. doi:10.1016/B978-0-12-386454-3.00431-0

A. Soroudi and M. Ehsan. A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks: A case study. Renewable and Sustainable Energy Reviews, 15(1), 794–800, 2011.

A. L. Soyster. Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Operations Research, 21(5), pages 1154–1157, 1973.

A. Thavaneswaran, S. S. Appadoo, and J. Frank, J. Binary option pricing using fuzzy numbers. Applied Mathematics Letters, 26(1), 65–72, 2013. doi: 10.1016/j.aml.2012.03.034

A. Thavaneswaran, S. S. Appadoo, and A. Paseka. Weighted possibilistic moments of fuzzy numbers with applications to GARCH modeling and option pricing. Mathematical and Computer Modelling, 49(1), 352–368, 2009. doi: 10.1016/j.mcm.2008.07.035

A. Tinke. Minimum Sample Size and Measurement Uncertainty in the Particle Size Distribution Analysis of Powders, 2020. doi: 10.13140/RG.2.2.12086.45127

É. Valkó and T. Turányi. Uncertainty Quantification of Chemical Kinetic Reaction Rate Coefficients, pages 35–44, 2020. doi:10.1007/978-3-030-50388-8_3

L. A. Zadeh. Fuzzy sets. Information and Control, 8(3), 338–353, 1965. doi: 10.1016/S0019-9958(65)90241-X

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100, 9–34, 1999. doi: 10.1016/S0165-0114(99)80004-9

H. Zhang, L. Shu, and S. Liao. Generalized Trapezoidal Fuzzy Soft Set and Its Application in Medical Diagnosis. Journal of Applied Mathematics, 2014. doi: 10.1155/2014/312069

X. Zhou, and H. Lin. Local Sensitivity Analysis. In S. Shekhar & H. Xiong (Eds.), Encyclopedia of GIS (pp. 616–616). Springer US, 2008. doi: 10.1007/978-0-387-35973-1_703

J. Zhu. Optimization of Power System Operation. Wiley-IEEE Press, 2015.

H. J. Zimmermann. Fuzzy Sets—Basic Definitions. In H.-J. Zimmermann (Ed.), Fuzzy Set Theory—And Its Applications, pages 11–23. Springer Netherlands, 1985. doi: 10.1007/978-94-015-7153-1_2