Detectability of Fault Signatures in a Wastewater Treatment Process


  • Heidi Lynn Marais
  • Valentina Zaccaria
  • Jean-Paul A. Ivan
  • Eva Nordlander



fault detection, wastewater treatment, detectability, isolation


In a wastewater treatment plant reliable fault detection is an integral component of process supervision and ensuring safe operation of the process. Detecting and isolating process faults requires that sensors in the process can be used to uniquely identify such faults. However, sensors in the wastewater treatment process operate in hostile environments and often require expensive equipment and maintenance. This work addresses this problem by identifying a minimal set of sensors which can detect and isolate these faults in the Benchmark Simulation Model No. 1. Residual-based fault signatures are used to determine this sensor set using a graph-based approach; these fault signatures can be used in future work developing fault detection methods. It is recommended that further work investigate what sizes of faults are critical to detect based on their potential effects on the process, as well as ways to select an optimal sensor set from multiple valid configurations.


D. Aguado and C. Rosen. Multivariate statistical monitoring of continuous wastewater treatment plants. Engineering Applications of Artificial Intelligence, 21 (7): 1080–1091, Oct. 2008. doi:10.1016/j.engappai.2007.08.004.

M. Basseville. On Fault Detectability and Isolability. European Journal of Control, 7 (6): 625–637, Jan. 2001. doi:10.3166/ejc.7.625-637.

A. Borowa, M. A. Brdyś, and K. Mazur. Detection of Unmeasured Process Abnormalities in Wastewater Treatment Process using MS-PCA. IFAC Proceedings Volumes, 40 (9): 262–267, Jan. 2007. doi:10.3182/20070723-3-PL-2917.00042.

M. Chen, L. Quan Hu, and H. Tang. An Approach for Optimal Measurements Selection on Gas Turbine Engine Fault Diagnosis. Journal of Engineering for Gas Turbines and Power, 137 (7), July 2015. doi:10.1115/1.4029171.

S. W. Choi and I.-B. Lee. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 59 (24): 5897–5908, Dec. 2004. doi:10.1016/j.ces.2004.07.019.

S. X. Ding. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools. Advances in industrial control. Springer London, London, 2nd edition, 2013. ISBN 978-1-4471-4799-2.

D. Garcia-Alvarez, M. J. Fuente, P. Vega, and G. Sainz. Fault Detection and Diagnosis using Multivariate Statistical Techniques in a Wastewater Treatment Plant. IFAC Proceedings Volumes, 42 (11): 952–957, Jan. 2009. doi:10.3182/20090712-4-TR-2008.00156.

K. V. Gernaey, U. Jeppsson, P. A. Vanrolleghem, and J. B. Copp. Benchmarking of Control Strategies for Wastewater Treatment Plants. IWA Publishing, Sept. 2014. ISBN 978-1-84339-146-3.

R. Isermann. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer-Verlag, Berlin Heidelberg, 2006. ISBN 978-3-540-24112-6. doi:10.1007/3-540-30368-5.

D. Jung, Y. Dong, E. Frisk, M. Krysander, and G. Biswas. Sensor selection for fault diagnosis in uncertain systems. International Journal of Control, 93 (3): 629–639, Mar. 2020. doi:10.1080/00207179.2018.1484171.

M. Krysander and E. Frisk. Sensor Placement for Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38 (6): 1398–1410, Nov. 2008. doi:10.1109/TSMCA.2008.2003968.

J.-M. Lee, C.-K. Yoo, and I.-B. Lee. Statistical Process Monitoring with Multivariate Exponentially Weighted Moving Average and Independent Component Analysis. Journal of Chemical Engineering of Japan, 36 (5): 563–577, 2003. doi:10.1252/jcej.36.563.

J.-M. Lee, C.-K. Yoo, S. W. Choi, P. A. Vanrolleghem, and I. Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59 (1): 223–234, Jan. 2004a. doi:10.1016/j.ces.2003.09.012.

J.-M. Lee, C.-K. Yoo, and I.-B. Lee. Statistical process monitoring with independent component analysis. Journal of Process Control, 14 (5): 467–485, Aug. 2004b. doi:10.1016/j.jprocont.2003.09.004.

T. Li, M. Winnel, H. Lin, J. Panther, C. Liu, R. O’Halloran, K. Wang, T. An, P. K. Wong, S. Zhang, and H. Zhao. A reliable sewage quality abnormal event monitoring system. Water Research, 121: 248–257, Sept. 2017. doi:10.1016/j.watres.2017.05.040.

G. Olsson, M. Nielsen, Z. Yuan, A. Lynggaard-Jensen, and J.-P. Steyer. Instrumentation, Control and Automation in Wastewater Systems. IWA Publishing, Apr. 2005. ISBN 978-1-900222-83-9.

L. Rieger, J. Alex, S. Winkler, M. Boehler, M. Thomann, and H. Siegrist. Progress in sensor technology - progress in process control? Part I: Sensor property investigation and classification. Water Science and Technology, 47 (2): 103–112, Jan. 2003. doi:10.2166/wst.2003.0096.

C. Rosen, L. Rieger, U. Jeppsson, and P. A. Vanrolleghem. Adding realism to simulated sensors and actuators. Water Science and Technology, 57 (3): 337–344, Feb. 2008. doi:10.2166/wst.2008.130.

G. Ryder. The United Nations world water development report, 2017: Wastewater: the untapped resource. Technical report, UNESCO World Water Assessment Programme, Paris, 2017.

M. Stenfelt, V. Zaccaria, and K. Kyprianidis. Automatic Gas Turbine Matching Scheme Adaptation for Robust GPA Diagnostics. In Proceedings of the ASME Turbo Expo, volume 6, Phoenix, United States, June 2019. doi:10.1115/GT2019-91018

K. Villez, P. A. Vanrolleghem, and L. Corominas. Optimal flow sensor placement on wastewater treatment plants. Water Research, 101: 75–83, Sept. 2016. doi:10.1016/j.watres.2016.05.068.

K. Villez, P. A. Vanrolleghem, and L. Corominas. A general-purpose method for Pareto optimal placement of flow rate and concentration sensors in networked systems – With application to wastewater treatment plants. Computers & Chemical Engineering, 139: 106880, Aug. 2020. doi:10.1016/j.compchemeng.2020.106880.

S. Yin, X. Xie, and W. Sun. A Nonlinear Process Monitoring Approach With Locally Weighted Learning of Available Data. IEEE Transactions on Industrial Electronics, 64 (2): 1507–1516, Feb. 2017. doi:10.1109/TIE.2016.2612161.

C. K. Yoo and I. Lee. Nonlinear multivariate filtering and bioprocess monitoring for supervising nonlinear biological processes. Process Biochemistry, 41 (8): 1854–1863, Aug. 2006. doi:10.1016/j.procbio.2006.03.038.

J. Yu. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science, 68 (1): 506–519, Jan. 2012. doi:10.1016/j.ces.2011.10.011.

V. Zaccaria, A. D. Fentaye, M. Stenfelt, and K. G. Kyprianidis. Probabilistic Model for Aero-Engines Fleet Condition Monitoring. Aerospace, 7 (6): 66, June 2020. doi:10.3390/aerospace7060066.