A Model of Aerobic and Anaerobic Metabolism in Cancer Cells – Parameter Estimation, Simulation, and Comparison with Experimental Results
DOI:
https://doi.org/10.3384/ecp21185465Keywords:
biological systems, cancer metabolism, simulation, parameter estimation, biotechnologyAbstract
We present a mathematical model of metabolism in cancer cells that is capable of describing both aerobic oxidative metabolism and anaerobic fermentation metabolism, and how cancer cells shift between these metabolic states when exposed to different substrates and different enzymatic inhibitors. The model is designed to be used in combination with experimental data gathered with an Agilent Seahorse XF metabolic analyzer. The model is parameterized in a manual tuning procedure to fit experimental data, and validated against experimental data from another setup, to which the model shows good conformity. We also investigate the structural identifiability of the model. The results indicate that the model is structurally identifiable, and that it can thus be uniquely parameterized, using the following 5 measurements: extracellular concentrations of glucose, glutamine and lactate, proton production rate (a Seahorse XF analyzer measurement) and oxygen consumption rate.References
Agilent. Brochure - Agilent seahorse XF live-cell metabolism solutions for cancer research, 2019. https://www.agilent.com/en/solutions/cell-analysis/cell-metabolism/cancer-metabolism.
G. F. Baker and W. F. Widdas. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. The Journal of Physiology, 231(1):143–165, 1973. doi:10.1113/jphysiol.1973.sp010225.
Y. J. Cha, E. S. Kim, and J. S. Koo. Amino acid transporters and glutamine metabolism in breast cancer. International Journal of Molecular Sciences, 19(3), 2018. doi:10.3390/ijms19030907.
O. T. Chis, J. R. Banga, and E. Balsa-Canto. Structural identifiability of systems biology models: A critical comparison of methods. PLoS ONE, 6(11), 2011. doi:10.1371/journal.pone.0027755.
R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1):11–20, 2008. doi:10.1016/j.cmet.2007.10.002.
D. Hanahan and R. A. Weinberg. Hallmarks of cancer: The next generation. Cell, 144(5):646–674, 2011. doi:10.1016/j.cell.2011.02.013.
I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96(3):736–749, 1989. doi:10.1016/0016-5085(89)90897-4.
R. G. Jones and C. B. Thompson. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes and Development, 23(5):537–548, 2009. doi:10.1101/gad.1756509.
D. Joubert, J. D. Stigter, and J. Molenaar. Determining minimal output sets that ensure structural identifiability. PLoS ONE, 13(11):1–19, 2018. doi:10.1371/journal.pone.0207334.
M. V. Liberti and J. W. Locasale. The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3): 211–218, 2016. doi:10.1016/j.tibs.2015.12.001.
H. Miao, X. Xia, A. S. Perelson, and H. Wu. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 53(1):3–39, 2011. doi:10.1137/090757009.
M. Scalise, L. Pochini, M. Galluccio, L. Console, and C. Indiveri. Glutamine transport and mitochondrial metabolism in cancer cell growth. Frontiers in Oncology, 7:1–9, 2017. doi:10.3389/fonc.2017.00306.
A. A. Shestov, X. Liu, Z. Ser, A. A. Cluntun, Y. P. Hung, L. Huang, D. Kim, A. Le, G. Yellen, J. G. Albeck, and J. W. Locasale. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GADPH as a limiting step. eLife, 3:e03342, 2014. doi:10.7554/eLife.03342.
J. D. Stigter and J. Molenaar. A fast algorithm to assess local structural identifiability. Automatica, 58:118–124, 2015. doi:10.1016/j.automatica.2015.05.004.
J. D. Stigter, M. B. Beck, and J. Molenaar. Assessing local structural identifiability for environmental models. Environmental Modelling and Software, 93:398–408, 2017. doi:10.1016/j.envsoft.2017.03.006.
A. F. Villaverde. Observability and structural identifiability of nonlinear biological systems. Complexity, 2019, 2019. doi:10.1155/2019/8497093.
O. Warburg. On the origin of cancer cells. Science, 123(3191):309–314, 1956. doi:10.1126/science.123.3191.309.
D. R. Wise and C. B. Thompson. Glutamine addiction: A new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8):427–433, 2010. doi:10.1016/j.tibs.2010.05.003.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Svein H. Stokka, Eivind S. Haus, Gunhild Fjeld, Tormod Drengstig, Kristian Thorsen
This work is licensed under a Creative Commons Attribution 4.0 International License.